K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dễ thấy ba điểm \(B,I,E\)\(C,K,E\) thẳng hàng ( Cùng là giao các phân giác trong các tam giác với nhau )

Gọi \(AI\cap BC=\left\{N\right\}\)

Ta thấy : \(\left\{{}\begin{matrix}\widehat{HAC}+\widehat{BAH}=90^o\\\widehat{BAH}+\widehat{ABC}=90^o\end{matrix}\right.\)

\(\Rightarrow\widehat{ABC}=\widehat{HAC}\)

Xét \(\widehat{ANC}=\widehat{ABN}+\widehat{BAN}\)

\(=\widehat{ABC}+\widehat{NAH}\) \(=\widehat{HAC}+\widehat{NAH}=\widehat{NAC}\)

Do đó : \(\Delta ANC\) cân tại \(C\)

Mà : \(CK\) là phân giác nên \(CK\) đồng thời là đường cao.

\(\Rightarrow CK\perp AI\) hay : \(EK\perp AI\)

Chứng minh tương tự thì ta có : \(IE\perp AK\)

Xét \(\Delta AIK\)\(EK\perp AI,IE\perp AK,EK\cap IE=\left\{E\right\}\)

\(\Rightarrow E\) là trưc tâm \(\Delta AIK\)

\(\Rightarrow AE\perp IK\) ( đpcm ) A B C I K E M N

sử dụng t/c đường phân giác của tam giác nhé rùi còn nữa nhưng chưa nghĩ ra hihi !!!!!!!!!!!!!!!!!!!!!

76967867

1 tháng 7 2021

tk : Câu hỏi của Cát Thảo Ngân

1 tháng 7 2021

cảm ơn nha

AH
Akai Haruma
Giáo viên
30 tháng 3

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-o-a-duong-cao-ah-phan-giac-ad-goi-i-j-lan-luot-la-cac-giao-diem-cac-duong-phan-giac-cua-tam-giac-abh-ach-e-la-giao-diem-c.8915069447339

12 tháng 8 2017

Dễ thấy B,J,E thẳng hàng và

C,K,E thẳng hàng
Gọi M là giao điểm AK với BC
Ta có 
Do đó tam giác ABM cân tại B
Mà BJ là tia phân giác nên

cũng là đường cao nên BJ vuông góc AM
Tương tự CE vuông góc AJ
Tam giác AJK có JE và KE là

đường cao nên AE cũng là

đường cao hay AE vuông góc JK

25 tháng 9 2017

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [C, B] Đoạn thẳng i: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [A, H] Đoạn thẳng a: Đoạn thẳng [I, B] Đoạn thẳng b: Đoạn thẳng [A, I] Đoạn thẳng c: Đoạn thẳng [A, Q] Đoạn thẳng d: Đoạn thẳng [C, Q] Đoạn thẳng g_1: Đoạn thẳng [K, I] Đoạn thẳng h_1: Đoạn thẳng [K, Q] Đoạn thẳng i_1: Đoạn thẳng [I, Q] Đoạn thẳng k_1: Đoạn thẳng [M, K] Đoạn thẳng m: Đoạn thẳng [A, K] A = (-3.68, 6.88) A = (-3.68, 6.88) A = (-3.68, 6.88) C = (15.18, 6.94) C = (15.18, 6.94) C = (15.18, 6.94) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm đường của j, h Điểm H: Giao điểm đường của j, h Điểm H: Giao điểm đường của j, h Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm Q: Giao điểm đường của r, s Điểm Q: Giao điểm đường của r, s Điểm Q: Giao điểm đường của r, s Điểm K: Giao điểm đường của e, f_1 Điểm K: Giao điểm đường của e, f_1 Điểm K: Giao điểm đường của e, f_1 Điểm M: Giao điểm đường của j_1, c Điểm M: Giao điểm đường của j_1, c Điểm M: Giao điểm đường của j_1, c

a) Gọi giao điểm của BI và AQ là M. 

Ta thấy \(\widehat{AIM}=\widehat{BAI}+\widehat{ABI}=\frac{\widehat{BAH}}{2}+\frac{\widehat{ABC}}{2}=\frac{\widehat{BAH}+\widehat{ABC}}{2}=\frac{90^o}{2}=45^o\)

Ta cũng có \(\widehat{IAM}=\widehat{IAK}+\widehat{KAM}=\frac{\widehat{BAH}}{2}+\frac{\widehat{HAC}}{2}=\frac{\widehat{BAH}+\widehat{HAC}}{2}=\frac{90^o}{2}=45^o\)

Vậy thì \(\widehat{AMI}=90^o\Rightarrow IK\perp AQ\)

Hoàn toàn tương tự \(QK\perp AI\)

Vậy K là trực tâm tam giác AQI.

b) Ta có \(\widehat{KQM}=\widehat{QAC}+\widehat{QCA}=\frac{\widehat{HAC}}{2}+\frac{\widehat{ACH}}{2}=\frac{\widehat{HAC}+\widehat{ACH}}{2}=\frac{90^o}{2}=45^o\)

Xét tam giác vuông KMQ có \(\widehat{KQM}=45^o\Rightarrow\) KMQ là tam giác cân tại M hay MK = MQ.

Theo a, MA = MI vậy nên \(\Delta AMK=\Delta IMQ\left(c-g-c\right)\Rightarrow AK=IQ\left(đpcm\right).\)

30 tháng 10 2022

Tại sao IAK=1/2 BAH v ạ