K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

hay H là trung điểm của BC

2: BH=CH=BC/2=6cm

=>AH=8cm

3: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó:ΔAHE cân tại A

hay AH=AE(1)

4: Xét ΔADH có

AI là đường cao

AI là đường trung tuyến

Do đó:ΔADH cân tại A

=>AD=AH(2)

Từ (1) và (2)suy ra AD=AE
hay ΔADE cân tại A

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

25 tháng 2 2020

                                                                       giúp mik với mik cảm ơn rất nhiều

25 tháng 2 2020

A B C E F 1 2 H

A)TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN

=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

XÉT\(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT \(\Delta ABH\)\(\Delta ACH\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

\(AB=AC\left(GT\right)\)

\(\widehat{B}=\widehat{C}\left(GT\right)\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(G-C-G\right)\)

B)

TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN

=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

C)VÌ\(\Delta ABH=\Delta ACH\left(CMT\right)\)

=>HB=HC (HAI CẠNH TƯƠNG ỨNG)

D)XÉT\(\Delta AEH\)\(\Delta AFH\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

D) XÉT TAM GIÁC LÀ ĐƯỢC

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=6cm

=>AH=8cm

c: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHE cân tại A

hay AE=AH

d: Xét ΔADH có

AI là đường cao

AI là đườngtrung tuyến

Do đó:ΔADH cân tại A

=>AD=AH=AE

=>ΔADE cân tại A

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔECB có

CA là trung tuyến

CA=BE/2

=>ΔECB vuông tại C

Xét tứ giác ADCH có

góc ADC=góc AHC=góc DCH=90 độ

=>ADCH là hcn

=>AD vuông góc AH

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là trung tuyến

nên AH là phân giác

c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có

AH chung

góc EAH=góc FAH

=>ΔAEH=ΔAFH

=>AE=AF
=>ΔAEF cân tại A

mà AI là phân giác

nên AI là trung tuyến

28 tháng 7 2023

A B H D E C I

a/

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)

b/

Xét tg vuông AHB có

\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông AHC có

\(HC^2=CE.AC\) (lý do như trên)

\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)

Mà \(HB.HC=AH^2\) (cmt)

\(\Rightarrow CE.BD.AC.AB=AH^4\)

c/

\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE

\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD

=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN

Xét tg vuông ADH và tg vuông ADE có

HD = AE (cạnh đối HCN)

AD chung

=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{AED}=\widehat{AHD}\) 

\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) ) 

\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)

\(\widehat{C}+\widehat{B}=90^o\) (2)

\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\)  (3)

Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC

Ta có

\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)

\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB

Mà IA= IC (cmt)

=> IB=IC => I là trung điểm của BC

 

 

 

 

 

 

 

2 tháng 7 2020

1. Xét hai tam giác vuông ΔABHΔABH và ΔACHΔACH có:

AHAH cạnh chung

AB=AC=10cmAB=AC=10cm (gt)

Vậy ΔABH=ΔACHΔABH=ΔACH (cạnh huyền- cạnh góc vuông)

HC=HBHC=HB (hai cạnh tương ứng) hay H là trung điểm BC

2. BH=HC=BC2=122=6BH=HC=BC2=122=6 cm

Áp dụng định lí Py-ta-go vào ΔΔ vuông ABHABH có:

AH2=AB2−HB2=102−62=64⇒AH=8AH2=AB2−HB2=102−62=64⇒AH=8 cm

3. Xét ΔAKEΔAKE và ΔAKHΔAKH có:

AKAK chung

ˆAKE=ˆAKH=90oAKE^=AKH^=90o (do HK⊥ACHK⊥AC)

KE=KHKE=KH (do giả thiết cho K là trung điểm của HE)

⇒ΔAKE=ΔAKH⇒ΔAKE=ΔAKH (c.g.c)

⇒AE=AH⇒AE=AH (hai cạnh tương ứng) (1)

Cách khác để chứng minh AE=AH

Do ΔAHEΔAHE có K là trung điểm của HE nên AK là đường trung tuyến,

Có HK⊥ACHK⊥AC hay AK⊥HEAK⊥HE nên AK là đường cao

ΔAHEΔAHE có AK là đường trung tuyến cũng là đường cao nên ΔAHEΔAHE cân đỉnh A nên AE=AH.

4. Ta có HI⊥ABHI⊥AB hay AI⊥DH⇒AI⊥DH⇒ AI là đường cao của ΔADHΔADH
Mà IH=ID nên AI cũng là đường trung tuyến ΔADHΔADH 
Vậy ΔAEHΔAEH cân tại A
Nên AD=AH (2)

Từ (1) và (2) suy ra AE=AD hay ΔAEDΔAED cân tại A.

5. Xét 2 tam giác vuông ΔAHIΔAHI và ΔAHKΔAHK có:

AH chung

ˆIAH=ˆKAHIAH^=KAH^ (hai góc tương ứng của ΔABH=ΔACHΔABH=ΔACH)

⇒ΔAHI=ΔAHK⇒ΔAHI=ΔAHK (cạnh huyền- góc nhọn)

⇒HI=HK⇒2HI=2HK⇒HD=HE⇒HI=HK⇒2HI=2HK⇒HD=HE

Mà ta có AD=AEAD=AE (cmt)

⇒AH⇒AH là đường trung trực của DE⇒AH⊥DEDE⇒AH⊥DE mà AH⊥BCAH⊥BC

⇒DE//BC⇒DE//BC

6. Để A là trung điểm ED thì DA⊥AHDA⊥AH mà ΔADHΔADH cân (cmt) nên ΔADHΔADH vuông cân đỉnh A.

Có AIAI là đường cao, đường trung tuyến nên AIAI cũng là đường phân giác nên

ˆDAI=ˆHAI=90o2=45oDAI^=HAI^=90o2=45o

⇒ˆIAH=ˆBAH=ˆCAH=45o⇒IAH^=BAH^=CAH^=45o (do ΔABH=ΔACHΔABH=ΔACH)

⇒ˆBAC=ˆBAH+ˆCAH=90o⇒BAC^=BAH^+CAH^=90o và ΔABCΔABC cân đỉnh A

⇒ΔABC⇒ΔABC vuông cân đỉnh A.

Vậy nếu ΔABCΔABC vuông cân đỉnh A thì AA là trung điểm của DE.

image