K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

22499....9100....09

=22.10^2n+1 + 4.10^2n +(10n-2 -1).10^n+2 +1.10^n+1 +9

=220.10^2n+4.10^2n+10^2n-10^n+2+10^n+1 +9

=10^2n.225-10^n(100-10)+9

=(10^n.15)^2-90.10^n+9

=(10^n.15-3)^2

13 tháng 8 2020

là n chữ số mak bạn

12 tháng 11 2018

Lớp 5 làm gì đã hok số CP lớp 6 mới học chứ

9 tháng 1 2019
??????????
??????????
1namnua^_^*_*
2 tháng 8 2020

22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)

k anh nhé

2 tháng 8 2020

22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)

Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)

⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)

⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)

Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:

2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)

24 tháng 11 2018

Ta có A=22499...9100...09(n€N*)

A=224.10^2n+(10^n-2 -1).10^n+2 +9+10^n+1

A=224.10^2n+10^2n-10^n+2+10^n+1+9

A=225.10^2n-10^n.100+10^n.10+9

A=(10^n.15)^2-2.(10^n.15).3+3^2

A=[(10^n.15)-3]^2

Vì n€N* nên A là SCP(đpcm)

Chúc bạn học giỏi nha

2 tháng 8 2020

22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)