(căn bậc 49-12 căn bậc5)-(căn bậc 49 + 12 căn bậc 5) bằng bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)
\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)
\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)
\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)
\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)
\(=-8\sqrt{3}\)
b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)
\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)
Với \(a,b>0;a\ne b\)ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow2\left(a+b\right)>\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}< \sqrt{2\left(a+b\right)}\)
Áp dụng ta được:
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< \sqrt{2\left(2+6\right)}+\sqrt{2\left(12+20\right)}\)
\(=\sqrt{16}+\sqrt{64}=4+8=12\)
Ta có đpcm.
\(2\sqrt{12}-3\sqrt{48}+2\sqrt{75}\)
\(=2\sqrt{2^2\cdot3}-3\sqrt{2^4\cdot3}+2\sqrt{5^2\cdot3}\)
\(=2\cdot2\sqrt{3}-3\cdot2^2\sqrt{3}+2\cdot5\sqrt{3}\)
\(=4\sqrt{3}-3\cdot4\sqrt{3}+10\sqrt{3}\)
\(=4\sqrt{3}-12\sqrt{3}+10\sqrt{3}\)
\(=\left(4-12+10\right)\sqrt{3}\)
\(=2\sqrt{3}\)
\(\sqrt{12}+\sqrt{27}-\sqrt{3}=\sqrt{3}.\left(2+3-1\right)=4\sqrt{3}\)
Trả lời:
\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-12\sqrt{5}+4}-\sqrt{45+12\sqrt{5}+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2\)
\(=-4\)
Học tốt
\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-12\sqrt{5}+4}-\sqrt{45+12\sqrt{5}+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=|3\sqrt{5}-2|-|3\sqrt{5}+2|\)
\(=3\sqrt{5}-3\sqrt{5}-4=-4\)