C/m \(\forall x,y,z\) thì giá trị đa thức \(A=xy+yz+zx\) không vượt quá giá trị đa thức \(B=x^2+y^2+z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số lít dầu đã lấy đi là :
211 ‐ ﴾ 85 + 46 ﴿ = 80 ﴾lít﴿
Mổi thùng bị lấy số lít dầu là :
80 : 2 = 40 ﴾ lít ﴿
Thùng thứ nhất lúc đầu có số lít dầu là :
85 + 40 = 125 ﴾ lít ﴿
Thùng thứ 2 lúc đầu có số lít dầu là :
46+40=86 ﴾ lít ﴿
a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)
\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vậy giá trị của A là một số chính phương
Thay x = y = z = 1 vào P ta có:
1.12+1.12+1.12-3.1.1.1 = 0
Thay x= y= z = -1 vào P ta có:
(-1).(-1)2 + (-1).(-1)2 + (-1).(-1)2 - 3.(-1)(-1)(-1) = 0
a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.
Ta phải chứng minh:
x²+y²+z²>=xy+yz+xz
Thật vậy, giả sử điều trên là đúng:
x²+y²+z²>=xy+yz+xz
<==>x²+y²+z²-xy-yz-xz>=0
Nhân 2 vào cả 2 vế, thu được:
2x²+2y²+2z²-2xy-2yz-2xz>=0
<==>x²-2xy+y²+y²-2yz+z²+z²-2xz+x²>=0
<==>(x-y)²+(y-z)²+(z-x)²>=0(điều đúng)
Vậy x²+y²+z²>=xy+yz+xz(dấu "=" xảy ra khi và chỉ khi x=y=z)
Hay với mọi x,y,z thì giá trị của xy+yz+xz không vượt quá x²+y²+z²