K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

A B C H D E I 1 2

A) XÉT \(\Delta BAH\)\(\Delta CAH\)CÓ 

\(\widehat{H_1}=\widehat{H_2}=90^o\)

\(AB=AC\left(GT\right)\)

AH LÀ CẠNH CHUNG

=>\(\Delta BAH\)=\(\Delta CAH\)(ch-cgv)

\(\Rightarrow BH=CH\)

\(\Rightarrow BH=CH=\frac{BC}{2}=\frac{18}{2}=9\left(cm\right)\)

THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta BAH\)VUÔNG TẠI H

\(\Rightarrow AB^2=HA^2+HB^2\)

\(\Rightarrow15^2=HA^2+9^2\)

\(\Rightarrow225=HA^2+81\)

\(\Rightarrow HA^2=225-81\)

\(\Rightarrow HA^2=144\)

\(\Rightarrow HA=\sqrt{144}=12\left(cm\right)\)

b) XÉT \(\Delta BAH\)\(\Delta BDH\)

\(AH=DH\left(GT\right)\)

\(\widehat{BHA}=\widehat{BHD}=90^o\)

BH LÀ CẠNH CHUNG

=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)

=>\(\widehat{ABH}=\widehat{DBH}\)

=> BH LÀ PHÂN GIÁC CỦA \(\widehat{ABD}\)HAY \(BE\)LÀ PHÂN GIÁC CỦA\(\widehat{ABD}\)

23 tháng 7 2020

C) VÌ AH=DH => EH LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AED\)

TA CÓ \(BC=CE\)

THAY \(BH+HC=CE\)(VÌ BH+HC=BC)

MÀ \(BH=CH\left(CMT\right)\)

\(\Rightarrow2HC=CE\)

MÀ  EH LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AED\)

=> C LÀ TRỌNG TÂM CỦA \(\Delta AED\)TA CÓ DI=IE => AI LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA\(\Delta AED\)MÀ C LÀ TRỌNG TÂM CỦA \(\Delta AED\)=> C BẮT BUỘT NẰM TRÊN AI => BA ĐIỂM A,C,I THẲNG HÀNG

a: Vì ΔABC đều

nên AB=AC=BC

mà BC=CE

nên AB=AC=BC=CE

b: Xét ΔABE có 

AC là đường trung tuyến

AC=BE/2

Do đó: ΔABE vuông tại A

c: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)

 a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của CB

=>CB=2CH

mà CB=CE

nên CE=2CH

=>\(\dfrac{EC}{EH}=\dfrac{2}{3}\)

Xét ΔEAD có

EH là đường trung tuyến

\(EC=\dfrac{2}{3}EH\)

Do đó: C là trọng tâm của ΔEAD

b: Xét ΔEAD có

C là trọng tâm

AC cắt DE tại M

Do đó: M là trung điểm của DE

Xét ΔEAD có

H,M lần lượt là trung điểm của DA,DE

=>HM là đường trung bình của ΔEAD

=>HM//AE

c: Để HM\(\perp\)AB thì AE\(\perp\)AB

=>ΔABE vuông tại A

Ta có: ΔABE vuông tại A

mà AC là đường trung tuyến

nên AC=CB=CE

=>AC=CB

mà AB=AC

nên AC=AB=BC

=>ΔABC đều

=>\(\widehat{ABC}=60^0\)

Khi ΔABC đều thì \(\widehat{HAC}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

=>\(\widehat{ACE}+60^0=180^0\)

=>\(\widehat{ACE}=120^0\)

Ta có: CA=CE

=>ΔCAE cân tại C

=>\(\widehat{CAE}=\widehat{CEA}=\dfrac{180^0-\widehat{ACE}}{2}=30^0\)

\(\widehat{HAE}=\widehat{HAC}+\widehat{CAE}=30^0+30^0=60^0\)

Xét ΔEAD có

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

mà \(\widehat{EAD}=60^0\)

nên ΔEAD đều

Ta có: ΔABC đều

mà AH là đường cao

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

H là trung điểm của AD

=>\(AD=2\cdot AH=3\sqrt{3}\left(cm\right)\)

ΔADE đều

mà AM là đường trung tuyến

nên AM\(\perp\)DE
=>ΔAMD vuông tại M

Xét ΔAMD vuông tại M có \(cosDAM=\dfrac{AM}{AD}\)

=>\(\dfrac{AM}{3\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(AM=4,5\left(cm\right)\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAEF có

FH là đường trung tuyến

FC=2/3FH

Do đó: C là trọng tâm của ΔAEF

=>AC là đường trung tuyến ứng với cạnh FE

mà M là trung điểm của FE

nên A,C,M thẳng hàng

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

1 tháng 7 2021

giúp mình với

 

Mình xin sửa lại đề một chút

Bài 3: Cho ΔABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN. Vẽ BD⊥AM tại D và CE⊥AN tại E.

a) Cm ΔAMN cân 

b) Cm DB=CE

Bài làm:

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

b) Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

BM=CN(gt)

\(\widehat{M}=\widehat{N}\)(ΔABM=ΔACN)

Do đó: ΔMBD=ΔNCE(Cạnh huyền-góc nhọn)

Suy ra: DB=EC(Hai cạnh tương ứng)

26 tháng 1 2022

a, Xét tam giác ABC cân tại A có AH vuông BC 

=> AH đồng thời là đường trung tuyến 

=> BH = CH 

b, Theo Pytago tam giác AHB vuông tại H

\(BH=\sqrt{AB^2-AH^2}=6cm\)

=> BC = 2BH = 12 cm 

c, Vì tia đối của BC là tia BM 

=> BM = BC 

Vì tia đối của CB là tia CN 

=> CN = BC 

=> BM + BH = CN + CH 

hay H là trung điểm MN 

Xét tam giaccs AMN có : 

AH là đường cao 

AH là đường trung tuyến 

=> AH đồng thời phân giác