K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

A B C H D E I 1 2

A) XÉT \(\Delta BAH\)\(\Delta CAH\)CÓ 

\(\widehat{H_1}=\widehat{H_2}=90^o\)

\(AB=AC\left(GT\right)\)

AH LÀ CẠNH CHUNG

=>\(\Delta BAH\)=\(\Delta CAH\)(ch-cgv)

\(\Rightarrow BH=CH\)

\(\Rightarrow BH=CH=\frac{BC}{2}=\frac{18}{2}=9\left(cm\right)\)

THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta BAH\)VUÔNG TẠI H

\(\Rightarrow AB^2=HA^2+HB^2\)

\(\Rightarrow15^2=HA^2+9^2\)

\(\Rightarrow225=HA^2+81\)

\(\Rightarrow HA^2=225-81\)

\(\Rightarrow HA^2=144\)

\(\Rightarrow HA=\sqrt{144}=12\left(cm\right)\)

b) XÉT \(\Delta BAH\)\(\Delta BDH\)

\(AH=DH\left(GT\right)\)

\(\widehat{BHA}=\widehat{BHD}=90^o\)

BH LÀ CẠNH CHUNG

=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)

=>\(\widehat{ABH}=\widehat{DBH}\)

=> BH LÀ PHÂN GIÁC CỦA \(\widehat{ABD}\)HAY \(BE\)LÀ PHÂN GIÁC CỦA\(\widehat{ABD}\)

23 tháng 7 2020

C) VÌ AH=DH => EH LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AED\)

TA CÓ \(BC=CE\)

THAY \(BH+HC=CE\)(VÌ BH+HC=BC)

MÀ \(BH=CH\left(CMT\right)\)

\(\Rightarrow2HC=CE\)

MÀ  EH LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AED\)

=> C LÀ TRỌNG TÂM CỦA \(\Delta AED\)TA CÓ DI=IE => AI LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA\(\Delta AED\)MÀ C LÀ TRỌNG TÂM CỦA \(\Delta AED\)=> C BẮT BUỘT NẰM TRÊN AI => BA ĐIỂM A,C,I THẲNG HÀNG
17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở Ea.Chứng minh tam giác ABE = tam giác ADEb.AE cắt BD tại I .Chứng minh I là trung điểm của BDc.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD d.Tính số đo góc ABD2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C a.Tính số đo của góc B và C của Tam giác ABCb.Kẻ AH vuông góc với BC (...
Đọc tiếp

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở E

a.Chứng minh tam giác ABE = tam giác ADE

b.AE cắt BD tại I .Chứng minh I là trung điểm của BD

c.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD 

d.Tính số đo góc ABD

2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C 

a.Tính số đo của góc B và C của Tam giác ABC

b.Kẻ AH vuông góc với BC ( H thuộc BC) .Trên tia HC lấy D sao cho H là trung điểm của BD .Chứng minh Tam giác ABH= tam giác AHD

c.Chứng minh AD= Cd

d.TRên tia đối của HA lấy K sao cho HK= HA. Chứng minh KD là đường trung trực của AC.

3.Cho tam giác ABC có góc A= 90 độ ( AB<AC) kẻ AH vuông góc với BC ,. Trên Bc lấy I sao cho HI=HB. Trên tia đối của HA lấy K sao cho HK=HA

a.chứng minh tam giác ABH=tam giác KIH

b.Chứng minh AB song song với KI

c.Vẽ IE vuông góc với AC tại E . Chứng minh K, I,E thẳng hàng 

Giải giúp mình với các bạn . Mình cần rất gấp . Mai phải nộp rồi

Thanks nhiều nghen

1
9 tháng 5 2021

xét tam giác ABE và tam giác ADE 

AE chung 

góc BAE = góc DAE(AE la tia phân giác của góc E)

AB = AD ( gt)

=> tam giác ABE = tam giac DAE  ( c.g.c)

b) xét tam giác  ABI và tam giác ADI

AI chung 

góc BAE =  góc DAE 

tam giác  ABI=tam giác ADI

=> BI = DI ( 2 cạnh t/ứ )

=> I là trung điểm của BD

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.a,CM:BD=DEb,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CEDc,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND când,CM: DN và CK cắt nhau tại trung điểm mỗi đườngBài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của...
Đọc tiếp

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.

a,CM:BD=DE

b,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CED

c,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND cân

d,CM: DN và CK cắt nhau tại trung điểm mỗi đường

Bài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của AK 

a,CM:Tam giác ABK cân và Tam giác ACK cân

b,Qua A kẻ tia Ax song song BC, qua C kẻ tia Cy song song AH. Tia Ax cắt Cy tại E . CM:AH =CE và AE vuông góc CE

c,Gọi giao điểm của AC và HE là I; CH và IK là Q . M là trung điểm của KC.CM:A;Q;M thẳng hàng

d,Tìm điều kiện của Tam giác ABC để AB song song QK

Bài 3: Cho Tam giác ABC cân tại A. Kẻ AH vuông góc BC(H thuộc BC)

a,CM: Tam giác ABH=Tam giác ACH và AH là đường trung trực của AC

b,Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM= CN.CM:MA=NA

c,Kẻ BD vuông góc AM (D thuộc AM). CE vuông góc AN (E thuộc AN). CM:Tam giác ADE cân và DE song song MN

d,CM:Ba đường thẳng BD ;AH; CE cung đi qua 1 điểm

Các bạn giúp mình với . 6h là mình phải nộp rồi

Bạn nào nhanh thì mình tích cho

Giúp mình nhanh nha

 

 

2
1 tháng 4 2020

A B C D E K N

XÉT TAM GIÁC ABD VÀ TAM GIÁC AED 

BA=EA ( GT)

\(\widehat{BAD}=\widehat{EAD}\)( GT)

AD-CẠNH CHUNG

=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)

=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2  góc tương ứng )

b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)

   cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)

  mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)

=> \(\widehat{KBD}=\widehat{CED}\)

XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :

\(\widehat{KBD}=\widehat{CED}\)(CMT)

BD=ED ( CMT)

\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )

=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)

=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)

c) 

vì \(BC//KN\)(GT)

=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )

MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA  KD VÀ NC 

=> KD//NC

=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)

XÉT TAM GIÁC KDN VÀ TAM GIÁC CND

\(\widehat{KDN}=\widehat{CND}\)( CMT)

DN-CẠNH CHUNG

\(\widehat{CDN}=\widehat{DNK}\)(CMT)

=> TAM GIÁC KDN = TAM GIÁC CND

=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)

LẠI CÓ DC= DK ( CMT )

=> KN=DK

XÉT TAM GIÁC KDN:KN=DK

=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)

1 tháng 4 2020

ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!

30 tháng 12 2023

a: Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

b: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE

=>ΔADE cân tại A