Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
1.
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
a) Xét tam giác AHB và tam giác AHE có
BH=HE
AH chung
góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)
=> tam giác AHB= tam giác AHE (c.g.c)
=>HE=HB
b) Xét tam giác AHB và tam giác DHE có
góc DHE = góc AHB ( đối đỉnh)
HE=HB (cmt)
AH=HD
=> tam giác AHB=tam giác DHE (c.g.c)
=> DE= AB ( 2 cạnh tương ứng)
=> tam giác DHE= tam giác AHE =tam giác AHB
=> AE=DE(2 cạnh tương ứng)
c) Xét tam giác AHC và tam giác DHC có
HC chung
góc AHE=góc DHE=90 độ
AH=HD
=> tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)
=>AC=DC (2 cạnh tương ứng)
Xét tam giác ACE và tam giác DCE có
AE= DE (cmt)
AC= DC(cmt)
CE chung
=> tam giác ACE= tam giác DCE(c.c.c)
=> góc EAC= góc EDC (2 góc tương ứng)
d)Ta có: C,E,B thẳng hàng
=> góc CEA+ góc AEB= 180 độ
Mà góc CEN và góc AEB là 2 góc đối đỉnh
=>góc AEC+ góc CEN= 180 độ
=> A,E,N thẳng hàng
A B C E H D K
a. \(AH\perp BC\Rightarrow\) AH là đường cao
Xét \(\Delta ABC\) cân tại A có AH là đường cao => AH cũng là đường trung tuyến => BH = CH
Xét \(\Delta ABH\) và \(\Delta DCH\) có:
BH = CD (cmt)
HA = DH (gt)
\(\widehat{AHB}=\widehat{DHC}\)
\(\Rightarrow\Delta ABH=\Delta DCH\left(c.g.c\right)\left(1\right)\Rightarrow AB=DC\)
Mà AB = AC ( \(\Delta ABC\) cân )
\(\Rightarrow DC=AC\Rightarrow\Delta ACD\) cân
b. Từ \(\left(1\right)\Rightarrow\widehat{ABH}=\widehat{DCH}\)
Mà \(\widehat{ABH}=\widehat{ACH}\) ( \(\Delta ABC\) cân)
\(\Rightarrow\widehat{DCH}=\widehat{ACH}\)
Có \(\widehat{ECD}+\widehat{DCH}=180^o\) ( 2 góc kề bù )
\(\widehat{ECA}+\widehat{ACH}=180^o\) ( 2 góc kề bù )
\(\Rightarrow\widehat{ECD}=\widehat{ECA}\)
Xét \(\Delta ACE\) và \(\Delta DCE\) có:
CE chung
AC = DC ( theo phần a)
\(\widehat{ECA}=\widehat{ECD}\left(cmt\right)\)
\(\Rightarrow\Delta ACE=\Delta DCE\left(c.g.c\right)\)
c. Xét \(\Delta ADE\) có AH = HD => EH là đường trung tuyến ( 2 )
Có \(BC=CE=\dfrac{BE}{2}\)
\(BH=CH=\dfrac{BC}{2}=\dfrac{CE}{2}\)
\(\Rightarrow CE+CH=CE+\dfrac{CE}{2}\)
\(\Rightarrow EH=\dfrac{3CE}{2}\) hay \(CE=\dfrac{2}{3}EH\left(3\right)\)
Từ ( 2 ) và (3) => C là trọng tâm \(\Delta ADE\)
=> AC là đường trung tuyến ứng với cạnh DE hay AK là đường trung tuyến ứng với cạnh DE
\(\Rightarrow DK=KE=\dfrac{DE}{2}\Rightarrow2DK=DE\)
Xét tam giác CED có CE + CD > DE = 2DK (BĐT tam giác)
Mà CE = BC ; CD = AC = AB
\(\Rightarrow AB+BC>2DK\)
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của CB
=>CB=2CH
mà CB=CE
nên CE=2CH
=>\(\dfrac{EC}{EH}=\dfrac{2}{3}\)
Xét ΔEAD có
EH là đường trung tuyến
\(EC=\dfrac{2}{3}EH\)
Do đó: C là trọng tâm của ΔEAD
b: Xét ΔEAD có
C là trọng tâm
AC cắt DE tại M
Do đó: M là trung điểm của DE
Xét ΔEAD có
H,M lần lượt là trung điểm của DA,DE
=>HM là đường trung bình của ΔEAD
=>HM//AE
c: Để HM\(\perp\)AB thì AE\(\perp\)AB
=>ΔABE vuông tại A
Ta có: ΔABE vuông tại A
mà AC là đường trung tuyến
nên AC=CB=CE
=>AC=CB
mà AB=AC
nên AC=AB=BC
=>ΔABC đều
=>\(\widehat{ABC}=60^0\)
Khi ΔABC đều thì \(\widehat{HAC}=\dfrac{60^0}{2}=30^0\)
Ta có: \(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
=>\(\widehat{ACE}+60^0=180^0\)
=>\(\widehat{ACE}=120^0\)
Ta có: CA=CE
=>ΔCAE cân tại C
=>\(\widehat{CAE}=\widehat{CEA}=\dfrac{180^0-\widehat{ACE}}{2}=30^0\)
\(\widehat{HAE}=\widehat{HAC}+\widehat{CAE}=30^0+30^0=60^0\)
Xét ΔEAD có
EH là đường cao
EH là đường trung tuyến
Do đó: ΔEAD cân tại E
mà \(\widehat{EAD}=60^0\)
nên ΔEAD đều
Ta có: ΔABC đều
mà AH là đường cao
nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)
H là trung điểm của AD
=>\(AD=2\cdot AH=3\sqrt{3}\left(cm\right)\)
ΔADE đều
mà AM là đường trung tuyến
nên AM\(\perp\)DE
=>ΔAMD vuông tại M
Xét ΔAMD vuông tại M có \(cosDAM=\dfrac{AM}{AD}\)
=>\(\dfrac{AM}{3\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)
=>\(AM=4,5\left(cm\right)\)
a)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔABH vuông tại H và ΔDCH vuông tại D có
AH=DH(gt)
BH=CH(cmt)
Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)
Suy ra: AB=DC(Hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AC=DC(đpcm)
b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có
EH chung
AH=DH(gt)
Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)
Suy ra: AE=DE(Hai cạnh tương ứng)
Xét ΔACE và ΔDCE có
CA=CD(cmt)
CE chung
AE=DE(cmt)
Do đó: ΔACE=ΔDCE(c-c-c)