K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)

8 tháng 4 2022

có cần hình k

 

8 tháng 4 2022

tự vẽ hình 

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

28 tháng 2 2021
 
 

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

 
2 tháng 1 2022

a) Xét tam giác AHB và tam giác AHE có

  BH=HE

  AH chung

  góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)

  => tam giác AHB= tam giác AHE (c.g.c)

  =>HE=HB

b) Xét tam giác AHB và tam giác DHE có

   góc DHE = góc AHB ( đối  đỉnh)

   HE=HB (cmt)

   AH=HD

 => tam giác AHB=tam giác DHE (c.g.c)

 => DE= AB ( 2 cạnh tương ứng)

=> tam giác DHE= tam giác AHE =tam giác AHB

=> AE=DE(2 cạnh tương ứng)

c) Xét tam giác AHC và tam giác DHC có

  HC chung

  góc AHE=góc DHE=90 độ

  AH=HD

 => tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)

=>AC=DC (2 cạnh tương ứng)

Xét tam giác ACE và tam giác DCE có

  AE= DE (cmt)

  AC= DC(cmt)

  CE chung

 => tam giác ACE= tam giác DCE(c.c.c)

 => góc EAC= góc EDC (2 góc tương ứng)

  

2 tháng 1 2022

d)Ta có: C,E,B thẳng hàng

=> góc CEA+ góc AEB= 180 độ

Mà góc CEN và góc AEB là 2 góc đối đỉnh

=>góc AEC+ góc CEN= 180 độ

 => A,E,N thẳng hàng

15 tháng 8 2018

A B C E H D K

a. \(AH\perp BC\Rightarrow\) AH là đường cao

Xét \(\Delta ABC\) cân tại A có AH là đường cao => AH cũng là đường trung tuyến => BH = CH

Xét \(\Delta ABH\)\(\Delta DCH\) có:

BH = CD (cmt)

HA = DH (gt)

\(\widehat{AHB}=\widehat{DHC}\)

\(\Rightarrow\Delta ABH=\Delta DCH\left(c.g.c\right)\left(1\right)\Rightarrow AB=DC\)

Mà AB = AC ( \(\Delta ABC\) cân )

\(\Rightarrow DC=AC\Rightarrow\Delta ACD\) cân

b. Từ \(\left(1\right)\Rightarrow\widehat{ABH}=\widehat{DCH}\)

\(\widehat{ABH}=\widehat{ACH}\) ( \(\Delta ABC\) cân)

\(\Rightarrow\widehat{DCH}=\widehat{ACH}\)

\(\widehat{ECD}+\widehat{DCH}=180^o\) ( 2 góc kề bù )

\(\widehat{ECA}+\widehat{ACH}=180^o\) ( 2 góc kề bù )

\(\Rightarrow\widehat{ECD}=\widehat{ECA}\)

Xét \(\Delta ACE\)\(\Delta DCE\) có:

CE chung

AC = DC ( theo phần a)

\(\widehat{ECA}=\widehat{ECD}\left(cmt\right)\)

\(\Rightarrow\Delta ACE=\Delta DCE\left(c.g.c\right)\)

c. Xét \(\Delta ADE\) có AH = HD => EH là đường trung tuyến ( 2 )

\(BC=CE=\dfrac{BE}{2}\)

\(BH=CH=\dfrac{BC}{2}=\dfrac{CE}{2}\)

\(\Rightarrow CE+CH=CE+\dfrac{CE}{2}\)

\(\Rightarrow EH=\dfrac{3CE}{2}\) hay \(CE=\dfrac{2}{3}EH\left(3\right)\)

Từ ( 2 ) và (3) => C là trọng tâm \(\Delta ADE\)

=> AC là đường trung tuyến ứng với cạnh DE hay AK là đường trung tuyến ứng với cạnh DE

\(\Rightarrow DK=KE=\dfrac{DE}{2}\Rightarrow2DK=DE\)

Xét tam giác CED có CE + CD > DE = 2DK (BĐT tam giác)

Mà CE = BC ; CD = AC = AB

\(\Rightarrow AB+BC>2DK\)

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.