Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔABH vuông tại H và ΔDCH vuông tại D có
AH=DH(gt)
BH=CH(cmt)
Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)
Suy ra: AB=DC(Hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AC=DC(đpcm)
b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có
EH chung
AH=DH(gt)
Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)
Suy ra: AE=DE(Hai cạnh tương ứng)
Xét ΔACE và ΔDCE có
CA=CD(cmt)
CE chung
AE=DE(cmt)
Do đó: ΔACE=ΔDCE(c-c-c)
tự vẽ hình
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
1.
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
A B C E H D K
a. \(AH\perp BC\Rightarrow\) AH là đường cao
Xét \(\Delta ABC\) cân tại A có AH là đường cao => AH cũng là đường trung tuyến => BH = CH
Xét \(\Delta ABH\) và \(\Delta DCH\) có:
BH = CD (cmt)
HA = DH (gt)
\(\widehat{AHB}=\widehat{DHC}\)
\(\Rightarrow\Delta ABH=\Delta DCH\left(c.g.c\right)\left(1\right)\Rightarrow AB=DC\)
Mà AB = AC ( \(\Delta ABC\) cân )
\(\Rightarrow DC=AC\Rightarrow\Delta ACD\) cân
b. Từ \(\left(1\right)\Rightarrow\widehat{ABH}=\widehat{DCH}\)
Mà \(\widehat{ABH}=\widehat{ACH}\) ( \(\Delta ABC\) cân)
\(\Rightarrow\widehat{DCH}=\widehat{ACH}\)
Có \(\widehat{ECD}+\widehat{DCH}=180^o\) ( 2 góc kề bù )
\(\widehat{ECA}+\widehat{ACH}=180^o\) ( 2 góc kề bù )
\(\Rightarrow\widehat{ECD}=\widehat{ECA}\)
Xét \(\Delta ACE\) và \(\Delta DCE\) có:
CE chung
AC = DC ( theo phần a)
\(\widehat{ECA}=\widehat{ECD}\left(cmt\right)\)
\(\Rightarrow\Delta ACE=\Delta DCE\left(c.g.c\right)\)
c. Xét \(\Delta ADE\) có AH = HD => EH là đường trung tuyến ( 2 )
Có \(BC=CE=\dfrac{BE}{2}\)
\(BH=CH=\dfrac{BC}{2}=\dfrac{CE}{2}\)
\(\Rightarrow CE+CH=CE+\dfrac{CE}{2}\)
\(\Rightarrow EH=\dfrac{3CE}{2}\) hay \(CE=\dfrac{2}{3}EH\left(3\right)\)
Từ ( 2 ) và (3) => C là trọng tâm \(\Delta ADE\)
=> AC là đường trung tuyến ứng với cạnh DE hay AK là đường trung tuyến ứng với cạnh DE
\(\Rightarrow DK=KE=\dfrac{DE}{2}\Rightarrow2DK=DE\)
Xét tam giác CED có CE + CD > DE = 2DK (BĐT tam giác)
Mà CE = BC ; CD = AC = AB
\(\Rightarrow AB+BC>2DK\)