K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

có cần hình k

 

8 tháng 4 2022

tự vẽ hình 

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

 a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của CB

=>CB=2CH

mà CB=CE

nên CE=2CH

=>\(\dfrac{EC}{EH}=\dfrac{2}{3}\)

Xét ΔEAD có

EH là đường trung tuyến

\(EC=\dfrac{2}{3}EH\)

Do đó: C là trọng tâm của ΔEAD

b: Xét ΔEAD có

C là trọng tâm

AC cắt DE tại M

Do đó: M là trung điểm của DE

Xét ΔEAD có

H,M lần lượt là trung điểm của DA,DE

=>HM là đường trung bình của ΔEAD

=>HM//AE

c: Để HM\(\perp\)AB thì AE\(\perp\)AB

=>ΔABE vuông tại A

Ta có: ΔABE vuông tại A

mà AC là đường trung tuyến

nên AC=CB=CE

=>AC=CB

mà AB=AC

nên AC=AB=BC

=>ΔABC đều

=>\(\widehat{ABC}=60^0\)

Khi ΔABC đều thì \(\widehat{HAC}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

=>\(\widehat{ACE}+60^0=180^0\)

=>\(\widehat{ACE}=120^0\)

Ta có: CA=CE

=>ΔCAE cân tại C

=>\(\widehat{CAE}=\widehat{CEA}=\dfrac{180^0-\widehat{ACE}}{2}=30^0\)

\(\widehat{HAE}=\widehat{HAC}+\widehat{CAE}=30^0+30^0=60^0\)

Xét ΔEAD có

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

mà \(\widehat{EAD}=60^0\)

nên ΔEAD đều

Ta có: ΔABC đều

mà AH là đường cao

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

H là trung điểm của AD

=>\(AD=2\cdot AH=3\sqrt{3}\left(cm\right)\)

ΔADE đều

mà AM là đường trung tuyến

nên AM\(\perp\)DE
=>ΔAMD vuông tại M

Xét ΔAMD vuông tại M có \(cosDAM=\dfrac{AM}{AD}\)

=>\(\dfrac{AM}{3\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(AM=4,5\left(cm\right)\)

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)

28 tháng 2 2021
  

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

 
4 tháng 5 2020

a) Vì AH = HD => EH là đg trung tuyến của tg ADE

Khi đó C thuộc đg trung tuyến EH (1)

Do tg ABC cân tại A

mà AH là đg cao của tg ABC

=> AH là đg trung trực của tg ABC

=> BH = CH

=> BH = CH = 1/2 BC

Lại do BC = CE

=> CH = 1/2 CE

hay CE = 2/3 EH (2)

Từ (1); (2) => C là trọng tâm tg ADE.

4 tháng 5 2020

Xét ΔAHBΔAHB và ΔAHCΔAHC có :

HAHA chung

HB=HCHB=HC ( AH là đường trung tuyến của BC )

AB=ACAB=AC ( ΔABCΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ⇒AHB^=AHC^ ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=180oAHB^+AHC^=180o ( hai góc kề bù )

⇒AHBˆ=AHCˆ=180o2=90o⇒AHB^=AHC^=180o2=90o

Xét ΔAHEΔAHE và ΔHEDΔHED có :

HEHE chung

HA=HDHA=HD ( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=90o)AHE^=DHE^(=90o)

Do đó : ΔAHE=ΔDHEΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ⇒AEH^=DEH^ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAEDΔAED ⇒AM⇒AM là đường trung tuyến của DE )

⇒DM=ME⇒DM=ME

Xét ΔHEDΔHED vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DEHM=12DE. Mà 12DE=DM12DE=DM⇒HM=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ⇒MHE^=MEH^

Dễ thấy MEHˆ=HEAˆ(cmt)MEH^=HEA^(cmt) ở cái (*)

⇒MHEˆ=HEAˆ⇒MHE^=HEA^

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AEAE (đpcm)