Tìm min Q=\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\) với x+y+z=6; x, y, z>0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NA
4
18 tháng 7 2017
Áp dụng BĐT Cauchy có:
S= \(\frac{1}{x}\)+ \(\frac{4}{y}\)+\(\frac{9}{z}\)= \(\frac{1^2}{x}\)+ \(\frac{2^2}{y}\)+\(\frac{3^2}{z}\)>= \(\frac{\left(1+2+3\right)^2}{x+y+z}\)= \(\frac{6^2}{1}\)=36
Vậy Min S=36
T
20 tháng 8 2019
Bài này thì chắc cô si ngược dấu thôi:v
\(LHS=\Sigma\frac{x}{1+y^2}=\Sigma x.\left(1-\frac{y^2}{1+y^2}\right)\)
\(\ge\Sigma x\left(1-\frac{y}{2}\right)=x+y+z-\frac{xy+yz+zx}{2}\)
\(\ge x+y+z-\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)
P/s: check xem có ngược dấu chỗ nào ko:v
TC
1
16 tháng 7 2020
Áp dụng Cauchy Schwarz
\(A=\frac{1}{x}+\frac{1}{y}+\frac{9}{z}\)
\(\ge\frac{\left(1+1+3\right)^2}{x+y+z}=\frac{25}{x+y+z}=25\)
Đẳng thức xảy ra bạn tự giải
Sử dụng AM - GM dạng cộng mẫu :
\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\)
\(\ge\frac{\left(1+2+3\right)^2}{x+y+z+1+2+3}\)
\(=\frac{36}{x+y+z+6}\)
\(=\frac{36}{12}=3\)
Đẳng thức xảy ra tại ......
Trên kia là sai lầm thường gawpjjj ( theo mình nghĩ thế tại nhác tìm dấu bằng )
thứ 2 là wolfram alpha bảo không có minimize: