Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
1:
Áp dụng bất đẳng thức Cô si:
\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)
\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)
\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)
\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)
\(=1\left[1+\frac{1}{4}\right]\)
\(=1+\frac{5}{4}=\frac{9}{4}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
Ta có
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)
\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)
Kết hợp với điều kiện ban đầu thì
GTNN của A là 0 đạt được khi
\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)
Em có cách này nhưng không chắc
Ta sẽ c/m BĐT phụ sau:\(2x+\frac{1}{x}\ge\frac{x^2}{2}+\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{2x}\le0\) (đúng) (ta chuyển hết VT sang vế phải rồi qui đồng lên)
Thiết lập hai BĐT tương tự và cộng theo vế ta tìm được Min
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................
Bài 1 quan trong là đoán dấu đẳng thức.
1/ Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)
\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)
\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)
\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)
\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)
\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)
Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)
Bạn kia làm ra kết quả đúng nhưng cách làm thì tào lao nhưng vẫn ra ???
Áp dụng BĐT Cô-si ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)
Tương tự:\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\),\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)
Cộng vế với vế của 3 BĐT trên ta được:
\(P+\frac{x+y+z}{2}+\frac{\left(x+y+z\right)+3}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow P+\frac{3}{2}+\frac{6}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow P\ge\frac{3}{2}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2+x}=\frac{x}{2}=\frac{x+1}{4}\\\frac{1}{y^2+y}=\frac{y}{2}=\frac{y+1}{4}\\\frac{1}{z^2+z}=\frac{z}{2}=\frac{z+1}{4},x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy \(P_{min}=\frac{3}{2}\)khi \(x=y=z=1\)
Áp dụng bđt Bunhiacopski ta có
\(P\ge\frac{9}{x^2+y^2+z^2+x+y+z}\ge\frac{9}{2\left(x+y+z\right)}=\frac{9}{6}=\frac{3}{2}.\)
Dấu "=" xảy ra khi x=y=z=1
Áp dụng bất đẳng thức svác sơ ta có
\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)
Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)
Áp dụng bất đẳng thức Canchy Schwarz dạng Engel :
\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)
Dấu " = " xảy ra khi x=y=z=1.
Bài này thì chắc cô si ngược dấu thôi:v
\(LHS=\Sigma\frac{x}{1+y^2}=\Sigma x.\left(1-\frac{y^2}{1+y^2}\right)\)
\(\ge\Sigma x\left(1-\frac{y}{2}\right)=x+y+z-\frac{xy+yz+zx}{2}\)
\(\ge x+y+z-\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)
P/s: check xem có ngược dấu chỗ nào ko:v