K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

Sử dụng AM - GM dạng cộng mẫu :

\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\)

\(\ge\frac{\left(1+2+3\right)^2}{x+y+z+1+2+3}\)

\(=\frac{36}{x+y+z+6}\)

\(=\frac{36}{12}=3\)

Đẳng thức xảy ra tại ......

Trên kia là sai lầm thường gawpjjj ( theo mình nghĩ thế tại nhác tìm dấu bằng )

thứ 2 là wolfram alpha bảo không có minimize:

18 tháng 7 2017

Áp dụng BĐT Cauchy có:

 S= \(\frac{1}{x}\)\(\frac{4}{y}\)+\(\frac{9}{z}\)\(\frac{1^2}{x}\)\(\frac{2^2}{y}\)+\(\frac{3^2}{z}\)>= \(\frac{\left(1+2+3\right)^2}{x+y+z}\)\(\frac{6^2}{1}\)=36

Vậy Min S=36

cái đó là bđt schwarts Đ à

16 tháng 7 2020

Áp dụng Cauchy Schwarz

\(A=\frac{1}{x}+\frac{1}{y}+\frac{9}{z}\)

\(\ge\frac{\left(1+1+3\right)^2}{x+y+z}=\frac{25}{x+y+z}=25\)

Đẳng thức xảy ra bạn tự giải

10 tháng 11 2019

\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)

Tương tự và cộng lại:

\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)

\("="\Leftrightarrow x=y=z=1\)

23 tháng 8 2017

\(\frac{17}{3}\) đúng k?

15 tháng 8 2020

X=0

nha

chuc

hoc

tot

20 tháng 11 2015

Cauchy-Swarz

\(1=\frac{2^2}{4x}+\frac{2^2}{y}+\frac{3^2}{z}\ge\frac{\left(2+2+3\right)^2}{4x+y+z}\)

\(\Rightarrow4x+y+z\ge49\)

Đẳng thức xảy ra khi \(\frac{2}{4x}=\frac{2}{y}=\frac{3}{z}\)