K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2020

Bài 2 hình như sai đề thì phải

9 tháng 12 2019

a) DK : x > 0; x khác 1

 \(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

c )  \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)

<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)

TH1: Q = 0 => x = 0 loại

TH2: Q khác 0

(1) là phương trình bậc 2 với tham số Q ẩn x.

(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)

<=> \(-3Q^2+4Q+4\ge0\)

<=> \(-\frac{2}{3}\le Q\le2\)

Vì Q nguyên và khác 0 nên Q =  1 hoặc Q = 2

Với Q = 1 => \(x-3\sqrt{x}+1=0\)

<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x 

Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.

Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

15 tháng 6 2016

http://olm.vn/hoi-dap/question/104313.html

coi hỉu j ko tui đang mò

4 tháng 5 2016

n :5 không dư 1;n khác 2

4 tháng 5 2016

a) n khác 1

b) n-1(5) = -1;1;-5;5

n= 0; 2; -4;6

ai cung k hieu chỉ vai bạn gioi hieu moi thay

dc hay

a) Ta có: \(P=\left(\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{\sqrt{a}}{a-1}\right):\left(\frac{2}{a}-\frac{2-a}{a\sqrt{a}+a}\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\frac{2\left(\sqrt{a}+1\right)}{a\left(\sqrt{a}+1\right)}-\frac{2-a}{a\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{a+\sqrt{a}+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\frac{2\sqrt{a}+2-2+a}{a\left(\sqrt{a}+1\right)}\)

\(=\frac{a+2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a\left(\sqrt{a}+1\right)}{a+2\sqrt{a}}\)

\(=\frac{a}{\sqrt{a}-1}\)

b)

ĐKXĐ: \(a\notin\left\{1;0\right\}\)

Để P-2 là số dương thì P-2>0

\(\frac{a}{\sqrt{a}-1}-2>0\)

\(\Leftrightarrow\frac{a}{\sqrt{a}-1}-\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}-1}>0\)

\(\Leftrightarrow\frac{a-2\sqrt{a}+2}{\sqrt{a}-1}>0\)

\(a-2\sqrt{a}+2=\left(\sqrt{a}-1\right)^2+1>0\forall a\)

nên \(\sqrt{a}-1>0\)

\(\Leftrightarrow\sqrt{a}>1\)

\(\Leftrightarrow a>1\)(tm)

Vậy: Khi a>1 thì P-2 là số dương

27 tháng 6 2020

A=\((\frac{\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}):\left(\frac{2\left(\sqrt{a}+1\right)-\left(2-a\right)}{a\left(\sqrt{a}+1\right)}\right)\)

\(A=\left(\frac{a+\sqrt{a}+\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right):\left(\frac{2\sqrt{a}+2-2+a}{a\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{a+2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{a\left(\sqrt{a}+1\right)}{2\sqrt{a}-a}\)

\(A=\frac{a}{\sqrt{a}-1}\)