Viết phương trình pascal tính đường cao của tam giác ( dạng hàm và thủ tục ) giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uses crt;
var t,n,m:longint;
//chuongtrinhcon
function gt(k:longint):longint;
var i,a:integer;
begin
a:=1;
for i:=1 to k do
a:=a*i;
gt:=a;
end;
//chuongtrinhchinh
begin
clrscr;
readln(n,m);
writeln(gt(n)+gt(m);
readln;
end.
Do BC vuông góc đường cao AH kẻ từ A nên BC nhận (3;4) là 1 vtpt
Phương trình BC:
\(3\left(x+4\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+12=0\)
C là giao điểm BC và trung tuyến kẻ từ C nên tọa độ C là nghiệm:
\(\left\{{}\begin{matrix}4x+y+3=0\\3x+4y+12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\) \(\Rightarrow C\left(0;-3\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\) thuộc trung tuyến kẻ từ C nên tọa độ M có dạng: \(M\left(m;-4m-3\right)\)
Áp dụng công thức trung điểm: \(\left\{{}\begin{matrix}x_A=2x_M-x_B=2m+4\\y_A=2y_M-y_B=-8m-6\end{matrix}\right.\)
Do A thuộc -4x+3y+2=0 nên:
\(-4\left(2m+4\right)+3\left(-8m-6\right)+2=0\Rightarrow m=-1\) \(\Rightarrow A\left(2;2\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-3) là 1 vtpt
Phương trình AB:
\(1\left(x+4\right)-3\left(y-0\right)=0\Leftrightarrow x-3y+4=0\)
\(\overrightarrow{AC}=\left(-2;-5\right)\Rightarrow\) đường thẳng AC nhận (5;-2) là 1 vtpt
Phương trình AC:
\(5\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow5x-2y-6=0\)
b.
Ta có: \(\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow AB=\sqrt{\left(-6\right)^2+\left(-2\right)^2}=2\sqrt{10}\)
Gọi H là chân đường cao hạ từ C xuống AB
\(\Rightarrow CH=d\left(C;AB\right)=\dfrac{\left|0-\left(-3\right).3+4\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{13\sqrt{10}}{10}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB=13\)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)
BI là phân giác của góc ABH
=>IA/AB=IH/BH
=>IA/5=IH/3=(IA+IH)/(5+3)=12/8=1,5
=>IA=7,5cm; IH=4,5cm
c: góc BAK+góc CAK=90 độ
góc BKA+góc HAK=90 độ
mà góc CAK=góc HAK
nên góc BAK=góc BKA
=>BI vuông góc AK
Xet ΔBAK có
BI,AI là đường cao
=>I là trực tâm
=>IK vuông góc AB
=>IK//AC
a: BC: x+y+4=0
=>AH: -x+y+c=0
Thay x=-1 và y=-2 vào AH, ta được:
c+1-2=0
=>c=1
=>-x+y+1=0
=>x-y-1=0
b: BC: x+y+4=0
=>B(x;-x-4)
Tọa độ M là:
xM=(x-1)/2 và yM=(-x-4-2)/2=(-x-6)/2
BC: x+y+4=0
=>MN: x+y+c=0
Thay xM=(x-1)/2 và yM=(-x-6)/2 vào MN, ta được:
\(\dfrac{x-1}{2}+\dfrac{-x-6}{2}+c=0\)
=>c+(1/2x-1/2-1/2x-3)=0
=>c=7/2
=>x+y+7/2=0
Do B thuộc BH nên tọa độ có dạng \(B\left(b;2b+3\right)\)
Gọi E là trung điểm AB \(\Rightarrow E\left(\dfrac{b+1}{2};b+3\right)\)
Do E thuộc CE nên:
\(\dfrac{b+1}{2}+b+3-2=0\Rightarrow b=-1\) \(\Rightarrow B\left(-1;1\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-2;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x-1\right)-1\left(y-3\right)=0\Leftrightarrow x-y+2=0\)
E(x;-x+2)
Theo đề, ta có: \(\left\{{}\begin{matrix}x=\dfrac{1+x_B}{2}\\-x+2=\dfrac{3+y_B}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B+1=2x\\y_B+3=-2x+4\end{matrix}\right.\)
=>B(2x-1;-2x+1)
vecto AB=(2x-2;-2x-2)
BH: 2x-y+3=0
=>VTPT là (2;-1)
=>VTCP là (1;2)
Theo đề, ta có: 1(2x-2)+2(-2x-2)=0
=>2x-2-4x-4=0
=>-2x-6=0
=>x=-3
=>B(5;-5)
vecto AB=(4;-8)
=>VTPT là (8;4)
Phương trình AB là:
8(x-5)+4(y+5)=0
=>2(x-5)+y+5=0
=>2x-10+y+5=0
=>2x+y-5=0
a, Tam giác ABC có trọng tâm \(G=\left(3;\dfrac{1}{3}\right)\)
Phương trình trung tuyến AM:
\(\dfrac{x-5}{3-5}=\dfrac{y+1}{\dfrac{1}{3}+1}\Leftrightarrow2x+3y-7=0\)
b, Phương trình đường thẳng BC là: \(x-2y=0\)
Phương trình đường cao AH vuông góc với BC nên có phương trình: \(2x+y+m=0\left(m\in R\right)\)
Mà \(A=\left(5;-1\right)\in AH\Rightarrow2.5-1+m=0\Leftrightarrow m=-9\)
\(\Rightarrow AH:2x+y-9=0\)
Thanks
Dạng thủ tục:
procedure duongcao(var x,y,z:real);
var p,s,dc:real;
begin
p:=(x+y+z)/2;
s:=sqrt(p*(p-x)*(p-y)*(p-z));
dc:=s/(x/2);
writeln('Do dai cua duong cao la: ',dc:4:2);
end;
Dạng hàm:
function duongcao(var x,y,z:real):real;
var p,s:real;
begin
p:=(x+y+z)/2;
s:=sqrt(p*(p-x)*(p-y)*(p-z));
duongcao:=s/(x/2);
end;