K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHDA vuông tại H và ΔADB vuông tại A có

góc HDA chung

Do đo: ΔHDA đồng dạng với ΔADB

=>DA/DA=DA/DB(2)

b: Xét ΔABD vuông tại A có AH là đường cao

nên \(DA^2=DH\cdot DB\)

c: Xét ΔDHA có DM là phân giác

nên HM/AM=DH/DA(1)

Xét ΔDAB có DK là đường phân giác

nên AK/BK=DA/DB(3)

Từ (1), (2)và (3) suy ra HM/AM=AK/BK

hay \(HM\cdot BK=AK\cdot AM\)

4 tháng 5 2018

hình bạn tự vẽ nhé

a, chứng minh theo trường hợp (g-g)

b, vì\(\Delta\)HDA \(\sim\)\(\Delta\)ADB\(\Rightarrow\)\(\dfrac{DA}{HD}=\dfrac{DB}{DA}\)\(\Rightarrow\)\(AD^2=DB.HD\)

c, vì \(\Delta HDA\sim\Delta ADB\)\(\Rightarrow\dfrac{DH}{AD}=\dfrac{DA}{DB}\)

\(mà\dfrac{DA}{DB}=\dfrac{AK}{KB}\)(vì AK là tia phân giác của goc ADB)

\(\Rightarrow\)\(\dfrac{DH}{AD}=\dfrac{AK}{KB}\)\(\dfrac{DH}{AD}=\dfrac{MH}{AM}\)\(\Rightarrow\)\(\dfrac{MH}{AM}=\dfrac{AK}{KB}\)\(\Rightarrow\)AM.AK=MH.KB

d

4 tháng 5 2018

ko chứng minh dc thẳng hàng đau bạn

11 tháng 5 2018

xét tam giác ABC:

EP//BC (cùng // AD)

=> AP/AC=AE/AB (talet) (1)

xét tam giác ADC:

PF//DC (cùng //AB)

=> AF/AD=AP/AC (talet) (1)

từ (1) (2) => AE/AB=AF/AD

xét tam giác ABD có:

AF/AD=AE/AB (cmt)

=> EF//BD (talet đảo)

xét tam giác QFE và QBD:

EQF=BQD (đối đỉnh)

QBD=EFQ (so le trong)

=> đồng dạng

=> EF/BD=EQ/QD => 2EI/2OD=EQ/QD

chứng minh tam giác EQI đồng dạng DQO vì có 2 góc đối đỉnh và 2 góc so le trong

=> góc EQI=DQO

=> I, Q, O thẳng hàng

mà A là trung điểm của AP (AEPF là hcn)

=> I, A thằng hàng

=> A, Q, O thẳng hàng

31 tháng 5 2020

a) Vì \(ABCD\) là hình chữ nhật (gt).

=> \(\widehat{BCD}=90^0\) (định nghĩa hình chữ nhật).

\(AB\) // \(CD\) (tính chất hình chữ nhật).

=> \(\widehat{ABH}=\widehat{BDC}\) (vì 2 góc so le trong).

+ Xét 2 tam giác vuông \(ABH\)\(BDC\) có:

\(\widehat{AHB}=\widehat{BCD}\left(=90^0\right)\)

\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)

=> \(\Delta ABH\sim\Delta BDC\left(g-g\right).\)

b) Vì \(ABCD\) là hình chữ nhật (gt).

=> \(\widehat{BAD}=90^0\) (định nghĩa hình chữ nhật).

Xét 2 tam giác vuông \(ADH\)\(BDA\) có:

\(\widehat{AHD}=\widehat{BAD}\left(=90^0\right)\)

\(\widehat{ADH}\) chung

=> \(\Delta ADH\sim\Delta BDA\left(g-g\right).\)

=> \(\frac{AD}{DB}=\frac{DH}{AD}\) (cặp cạnh tương ứng).

=> \(AD.AD=DB.DH\)

=> \(AD^2=DB.DH\)

Chúc bạn học tốt!

31 tháng 5 2020

mình cảm ơn ạ!

a: Xét ΔHAB vuông tại Hvà ΔADB vuông tại A có

góc ABD chung

=>ΔHAB đồng dạng với ΔADB

Xét ΔHDA vuông tại H và ΔADB vuông tại A có

góc ADB chung

=>ΔHDA đồng dạng với ΔADB

=>ΔHAB đồng dạng với ΔHDA

Xét ΔHAB vuông tại H và ΔCBD vuông tại C có

góc HBA=góc CDB

=>ΔHAB đồng dạng với ΔCBD

b: Xét ΔABD vuông tại A có AH là đường cao

nên BH*BD=BA^2=CD^2

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

BH=8^2/10=6,4cm

HD=10-6,4=3,6cm

A B C D H O P M K E F I Q

d) +)CM EF // DB

Gọi I là giao điểm của EF và AP

Vì tứ giác ABCD là hình chữ nhật và O là giao điểm của AC và BD nên AO = OB

Suy ra \(\Delta AOB\) cân tại O

=> \(\widehat{OAB}=\widehat{OBA}\) (1)

Vì tứ giác AEPF là hình chữ nhật và I là giao điểm của AP và EF nên AI = IE

Suy ra \(\Delta AIE\) cân tại O

\(\Rightarrow\widehat{OAE}=\widehat{AEI}\) (2)

Từ (1) và (2) suy ra \(\widehat{OBA}=\widehat{AEI}\) mà 2 góc này nằm ở vị trí đồng vị nên EF // BD

+) CM A, Q ,O thẳng hàng

Vì FE // DB \(\Rightarrow\Delta EQF\sim\Delta DQB\Rightarrow\frac{EF}{BD}=\frac{EQ}{QD}\Rightarrow \frac{2EI}{2DO}=\frac{EQ}{QD}\)

Xét \(\Delta EQI \)\(\Delta DQO\) có :

\(\widehat{FED}=\widehat{EDB}\)

\(\frac{EI}{DO}=\frac{EQ}{QD}\)

\(\Rightarrow\Delta EQI\sim\Delta DQO\)

\(\Rightarrow\widehat{EQI}=\widehat{DQO}\)

\(\widehat{IQE}+\widehat{IQD}=180^o\)

\(\Rightarrow\widehat{DQO}+\widehat{IQD}=180^ohayI,Q,O\) thẳng hàng hay A, Q, O thẳng hàng

Phần a), b) ; c) bạn tự làm nha

a: Xét ΔHDA vuông tại H và ΔADB vuông tạiA có

góc ADB chung

Do đo: ΔHDA đồng dạng với ΔADB

b: Ta có: ΔHDA đồg dạng với ΔADB

nen DH/DA=DA/DB

hay \(DA^2=DH\cdot DB\)