chung minh rang B=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{7^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+\(\frac{1}{6^2}\)+\(\frac{1}{8^2}\)<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\) \(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)= \(1-\frac{1}{8}< 1\)
Ta có
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(........\)
\(\frac{1}{8^2}< \frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
Mà \(\frac{3}{8}< 1\)
\(\Rightarrow B< 1\)
Đặt A =\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}< 1\)
\(\Leftrightarrow B< A< 1\)
mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha
Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)
còn phần ''b'' bạn hãy tách ra nha
Ta có:
1/2^2 < 1/1.2
1/3^2 < 1/2.3
1/4^2 < 1/3.4
..........
1/8^2 < 1/7.8
=> B = 1/2^2 + 1/3^2 + 1/4^2 + ... +1/8^2 < 1/1.2 + 1/2.3 + 1/3.4 +....+ 1/7.8 = 1 - 1/2 +1/2 - 1/3 + 1/3 - 1/4 +...+1/7 - 1/8 = 1 - 1/8 < 1
=> B < 1 (ĐPCM)
a) 1 và $\frac{2}{5}$
$1 = \frac{1}{1} = \frac{{1 \times 5}}{{1 \times 5}} = \frac{5}{5}$
Ta có $\frac{5}{5}$ và $\frac{2}{5}$
b) 2 và $\frac{3}{8}$
$2 = \frac{2}{1} = \frac{{2 \times 8}}{{1 \times 8}} = \frac{{16}}{8}$
Ta có $\frac{{16}}{8}$ và $\frac{3}{8}$
c) $\frac{1}{3}$ và 5
$5 = \frac{5}{1} = \frac{{5 \times 3}}{{1 \times 3}} = \frac{{15}}{3}$
Ta có $\frac{1}{3}$ và $\frac{{15}}{3}$
a: \(1=\dfrac{1}{1}=\dfrac{1\cdot5}{5\cdot5}=\dfrac{5}{5}\)
\(\dfrac{2}{5}=\dfrac{2}{5}\)
b: \(2=\dfrac{2\cdot8}{1\cdot8}=\dfrac{16}{8}\); \(\dfrac{3}{8}=\dfrac{3}{8}\)
c: \(5=\dfrac{5}{1}=\dfrac{5\cdot3}{1\cdot3}=\dfrac{15}{3};\dfrac{1}{3}=\dfrac{1}{3}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(B< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{8-7}{7.8}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(B< 1-\frac{1}{8}< 1\left(dpcm\right)\)