Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\) \(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)= \(1-\frac{1}{8}< 1\)
Ta có
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(........\)
\(\frac{1}{8^2}< \frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
Mà \(\frac{3}{8}< 1\)
\(\Rightarrow B< 1\)
Đặt A =\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}< 1\)
\(\Leftrightarrow B< A< 1\)
mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha
Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)
còn phần ''b'' bạn hãy tách ra nha
Ta có:
1/2^2 < 1/1.2
1/3^2 < 1/2.3
1/4^2 < 1/3.4
..........
1/8^2 < 1/7.8
=> B = 1/2^2 + 1/3^2 + 1/4^2 + ... +1/8^2 < 1/1.2 + 1/2.3 + 1/3.4 +....+ 1/7.8 = 1 - 1/2 +1/2 - 1/3 + 1/3 - 1/4 +...+1/7 - 1/8 = 1 - 1/8 < 1
=> B < 1 (ĐPCM)
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)
a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy...
b, Đặt A là tên của tổng trên
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B là biêu thức trong ngoặc
Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow B< 2-\frac{1}{50}< 2\)
Thay B vào A ta được:
\(A< \frac{1}{2^2}.2=\frac{1}{2}\)
mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50
A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)
A<1-1/50
mà 1/50>0=>1-1/50<1<2
A<1-1/50<1<2
A<2
chúc học tốt
Ta có :
\(\frac{1}{3^2}< \frac{1}{2\times3};\frac{1}{4^2}< \frac{1}{3\times4};\frac{1}{5^2}< \frac{1}{4\times5};\frac{1}{6^2}< \frac{1}{5\times6};...;\frac{1}{100^2}< \frac{1}{99\times100}\)
\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{99\times100}\)
\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(B< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{8-7}{7.8}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(B< 1-\frac{1}{8}< 1\left(dpcm\right)\)