K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021

Đặt bđt là (*)

Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :

\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)

\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)

Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)

Hay \(n\le2\)

Với n=2 . Thay vào (*) : ta cần CM BĐT 

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)

Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự ta có:

\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)

Ta cần CM: 

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)

=> đpcm

Dấu '=' xảy ra khi a=b=c

=> số nguyên dương lớn nhất : n=2( thỏa mãn)

3 tháng 7 2016

mày ghi de sai

phai lon hon 3

3 tháng 7 2016

\(a\le b\le c=>\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}=>1+\frac{1}{a}\ge1+\frac{1}{b}\ge1+\frac{1}{c}\)

\(=>\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge3\left(1+\frac{1}{c}\right)\)

\(=>3\left(1+\frac{1}{c}\right)\le3=>1+\frac{1}{c}\le1=>\frac{1}{c}\le0=>1\le0\)

Đề sai thì phải bn à

26 tháng 5 2015

1/a^4+b+c<=1/a+b+c

1/b^4+c+a=1/a+b+c

1/c^4+b+a<=1/a+b+c

=><=3/a+b+c

14 tháng 5 2018

Ta có : \(a^2+\frac{1}{9}\ge\frac{2}{3}a\)

Suy ra 

\(VT\le\Sigma\left(\frac{a}{\left(a^2+1\right)}\right)\le\Sigma\frac{a}{\frac{2}{3}a+\frac{8}{9}}=\Sigma\frac{9a}{6a+8}=\frac{9}{2}-\Sigma\frac{6}{4+3a}\le\frac{9}{2}-\frac{54}{12+3\left(a+b+c\right)}=\frac{9}{10}\)

Đẳng thức xảy ra <=> \(a=b=c=\frac{1}{3}\)

10 tháng 2 2019

Cách khác nhá.

Lời giải

Ta sẽ c/m:\(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow\frac{a}{a^2+1}-\frac{18}{25}a-\frac{3}{50}\le0\)

Thật vậy:\(VT=\frac{-\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\le0\forall x\)

Vậy \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(VT\le\frac{18}{25}\left(a+b+c\right)+\frac{9}{50}=\frac{9}{10}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

23 tháng 1 2021

\(\text{⋄}\)Dễ có: \(B\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)

\(\text{⋄}\)Đặt \(b+c=x;c+a=y;a+b=z\left(x,y,z>0\right)\)thì \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)

Giả thiết được viết lại thành: \(x+y+z\le3\)và ta cần tìm giá trị nhỏ nhất của \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)\)

\(\text{⋄}\)Ta có: \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)=27+36\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+48\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{64}{xyz}\)\(\ge27+36.\frac{9}{x+y+z}+48.\frac{27}{\left(x+y+z\right)^2}+64.\frac{27}{\left(x+y+z\right)^3}\ge343\)

Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1/2

AH
Akai Haruma
Giáo viên
20 tháng 2 2017

Giải:

\(0\leq a,b,c\leq 1\Rightarrow ab,ac,ab\geq abc\)

Do đó mà \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}\)

Giờ chỉ cần chỉ ra \(\frac{a+b+c}{abc+1}\leq 2\). Thật vậy:

Do \(0\leq b,c\leq 1\Rightarrow (b-1)(c-1)\geq 0\Leftrightarrow bc+1\geq b+c\Rightarrow bc+a+1\geq a+b+c\)

Suy ra \( \frac{a+b+c}{abc+1}\leq \frac{bc+a+1}{abc+1}=\frac{bc+a-2abc-1}{abc+1}+2=\frac{(bc-1)(1-a)-abc}{abc+1}+2\)

Ta có \(\left\{\begin{matrix}bc\le1\\a\le1\\abc\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(bc-1\right)\left(1-a\right)\le1\\-abc\le0\end{matrix}\right.\) \(\Rightarrow \frac{(bc-1)(1-a)-abc}{abc+1}+2\leq 2\Rightarrow \frac{a+b+c}{abc+1}\leq 2\)

Chứng minh hoàn tất

Dấu bằng xảy ra khi \((a,b,c)=(0,1,1)\) và hoán vị.

20 tháng 2 2017

vao cau hoi hay OLM itm