K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

a) Xét ΔABHΔABH và ΔHACΔHAC có

AB=AC;ˆBAH=ˆCAH;AH:chungAB=AC;BAH^=CAH^;AH:chung

⇒⇒ ΔABHΔABH = ΔHACΔHAC (cgc)

b) Có BK = AB ⇒ΔABK⇒ΔABK cân tại B

12 tháng 5 2021

tam giác đều mà bạn

 

a: Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường trung trực của BC

=>HB=HC

Xét ΔABH và ΔACH có

AB=AC
BH=CH

AH chung

Do đó: ΔABH=ΔACH

b: góc ABK=90-30=60 độ

Xét ΔBAK có BA=BK

nên ΔBAK cân tại B

mà góc ABK=60 độ

nên ΔBAK đều

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔMAD và ΔMBH có

góc MAD=góc MBH

MA=MB

góc AMD=góc BMH

=>ΔMAD=ΔMBH

=>AD=BH

mà AD//BH

nên ADBH là hình bình hành

=>BD=AH

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
5 tháng 2 2017

cần vẽ hình 0 bạn

4 tháng 5 2017

CD chứ bạn

4 tháng 5 2017

ban giup nhah len nhe dc ko

2 tháng 5 2017

A B C D E H I K

a) Xét tam giác ABD và tam giác ACE

        BDA = CEA = 90 độ

        AB = AC

        chung góc A

=>.Tam giác ABD = Tam giác ACE(ch-gn)

=> BD = CE (2 cạnh tương ứng)

b)=> AD = AE ( 2 cạnh tương ứng)

Mà AB = AC 

=> BE = CD

Xét tam giác EBC và tam giác DBC:

      BE = CD

      BD = CE

      BC chung

=>Tam giác EBC = Tam giác DBC (c-c-c)

=>BH = CH(2 cạnh tương ứng)

=>Tam giác BHC cân

c)BE,CD là các đường cao của tam giác ABC

Mà BE và CD cắt nhau ở H

=> AH là đường cao của tam giác ABC

Gọi I là giao điểm của AH và BC

Xét tam giác BAH và tam giác CAH

     AIB = AIC = 90 độ

     AB = AC

     AI chung

=>Tam giác BAH = Tam giác CAH (ch-cgv)

=>BI = CI ( 2 cạnh tương ứng)

Mà AH là đường cao của tam giác ABC =>AI là đường cao của tam giác ABC

=> AI là đường trung trực của BC

=>AH là đường trung trực của BC

d)DKC + CDK + KCD =180 độ

DKC = 90 độ - KCD

ECB + BEC + CBE = 180 độ

BEC =90 độ - CBE

Mà EBC = DCB

=> ECB > DCK

=>90 độ - ECB < 90 độ - DCK

=>ECB < DKC

22 tháng 11 2017

a) Xét tam giác ABD và tam giác ACE BDA = CEA = 90 độ AB = AC chung góc A =>.Tam giác ABD = Tam giác ACE(ch-gn) => BD = CE (2 cạnh tương ứng) b)=> AD = AE ( 2 cạnh tương ứng) Mà AB = AC => BE = CD Xét tam giác EBC và tam giác DBC: BE = CD BD = CE BC chung =>Tam giác EBC = Tam giác DBC (c-c-c) =>BH = CH(2 cạnh tương ứng) =>Tam giác BHC cân c)BE,CD là các đường cao của tam giác ABC Mà BE và CD cắt nhau ở H => AH là đường cao của tam giác ABC Gọi I là giao điểm của AH và BC Xét tam giác BAH và tam giác CAH AIB = AIC = 90 độ AB = AC AI chung =>Tam giác BAH = Tam giác CAH (ch-cgv) =>BI = CI ( 2 cạnh tương ứng) Mà AH là đường cao của tam giác ABC =>AI là đường cao của tam giác ABC => AI là đường trung trực của BC =>AH là đường trung trực của BC d)DKC + CDK + KCD =180 độ DKC = 90 độ - KCD ECB + BEC + CBE = 180 độ BEC =90 độ - CBE Mà EBC = DCB => ECB > DCK =>90 độ - ECB < 90 độ - DCK =>ECB < DKC

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

a) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay ED\(\perp\)BC(Đpcm)