K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2020

Ta có 2x-6x+5>0=>-4x+5>0

=>-4x>-5=>x<\(\frac{5}{4}\)

Vậy tập nghiệm của bat phương trình là{x/x=\(\frac{5}{4}\)}

13 tháng 3 2023

2x³ + 3x² + 6x + 5 = 0

⇔ 2x³ + 2x² + x² + x + 5x + 5 = 0

⇔ (2x³ + 2x²) + (x² + x) + (5x + 5) = 0

⇔ 2x²(x + 1) + x(x + 1) + 5(x + 1) = 0

⇔ (x + 1)(2x² + x + 5) = 0

⇔ (x + 1)[2(x² + 2.x.1/4 + 1/16) + 79/16] = 0

⇔ (x + 1)[(2(x + 1/4)² + 79/16] = 0

⇔ x + 1 = 0 (do 2(x + 1/4)² + 79/16 > 0 với mọi x)

⇔ x = -1

Vậy S = {-1}

30 tháng 8 2021

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)

TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)

TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)

b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)

\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

21 tháng 12 2016

Giao lưu:

Nhân 2

\(\Leftrightarrow y^2-6y+10>0\)

(y-3)^2+1>0 => dúng với mọi y=> đúng với mọi x

21 tháng 12 2016

E rằng ngonhuminh không bắt được cái gió mùa này rồi:

\(2x^2-6x+5>0\Leftrightarrow4x^2-12x+10>0\Leftrightarrow\left(2x-3\right)^2+1>0\)

Ta có \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1>0\)

Vậy bất phương trình đã cho nguyện đúng với mọi x.

22 tháng 1

a) Với m = 2, phương trình đã cho trở thành:

2x² - 6x + 2.2 - 5 = 0

⇔ 2x² - 6x - 1 = 0

∆' = (-3)² - 2.(-1) = 11 > 0

⇒ Phương trình có 2 nghiệm phân biệt:

x₁ = [-(-3) + 11]/2 = (3 + 11)/2

x₂ = [-(-3) - 11]/2 = (3 - 11)/2

b) ∆' = (-3)² - 2.(2m - 5)

= 9 - 4m + 10

= 19 - 4m

Để phương trình đã cho có nghiệm thì ∆' ≥ 0

⇔ 19 - 4m ≥ 0

⇔ 4m ≤ 19

⇔ m ≤ 19/4

Theo định lý Viét, ta có:

x₁ + x₂ = 3

x₁x₂ = (2m - 5)/2

Ta có:

1/x₁ + 1/x₂ = 6

⇔ (x₁ + x₂)/(x₁x₂) = 6

⇔ 3/[(2m - 5)/2] = 6

⇔ (2m - 5)/2 = 1/2

⇔ 2m - 5 = 1

⇔ 2m = 6

⇔ m = 3 (nhận)

Vậy m = 3 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

NV
18 tháng 10 2020

ĐKXĐ: \(x\ge-1\)

- Với \(x=-1\) ko phải nghiệm

- Với \(x>-1\)

\(\Leftrightarrow x^2-11x+24+\left(x-5\right)\left(x+7-5\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x^2-11x+24+\frac{\left(x-5\right)\left(x^2-11x+24\right)}{x+7+5\sqrt{x+1}}=0\)

\(\Leftrightarrow\left(x^2-11x+24\right)\left(1+\frac{x-5}{x+7+5\sqrt{x+1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-11x+24=0\Rightarrow x=...\\1+\frac{x-5}{x+7+5\sqrt{x+1}}=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow x+7+5\sqrt{x+1}=5-x\)

\(\Leftrightarrow2\left(x+1\right)+5\sqrt{x+1}=0\) (vô nghiệm do \(x>-1\))

Vậy ...

27 tháng 2 2020

Phương trình tào lao. Không giải được bạn nhé

NV
11 tháng 2 2020

\(\left(2x+1\right)\left(x-1\right)>0\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -\frac{1}{2}\end{matrix}\right.\)

\(\left(3x+1\right)\left(x-5\right)\left(-4x+5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{3}\\\frac{5}{4}\le x\le5\end{matrix}\right.\)

\(\frac{x+2}{x-2}\le\frac{3x+1}{2x-1}\Leftrightarrow\frac{3x+1}{2x-1}-\frac{x+2}{x-2}\ge0\)

\(\Leftrightarrow\frac{x^2-8x}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{x\left(x-8\right)}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\\frac{1}{2}< x< 2\\x\ge8\end{matrix}\right.\)