Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x³ + 3x² + 6x + 5 = 0
⇔ 2x³ + 2x² + x² + x + 5x + 5 = 0
⇔ (2x³ + 2x²) + (x² + x) + (5x + 5) = 0
⇔ 2x²(x + 1) + x(x + 1) + 5(x + 1) = 0
⇔ (x + 1)(2x² + x + 5) = 0
⇔ (x + 1)[2(x² + 2.x.1/4 + 1/16) + 79/16] = 0
⇔ (x + 1)[(2(x + 1/4)² + 79/16] = 0
⇔ x + 1 = 0 (do 2(x + 1/4)² + 79/16 > 0 với mọi x)
⇔ x = -1
Vậy S = {-1}
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
Bạn ơi bạn học lớp 8 rồi bạn có thể giải giú mình 2 bài toán lớp 7 đang đăng ko. Nếu đc minh cảm ơn nhiều nhé
Để \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
ta thấy x2+1 luôn dương với mọi x
nên 2x(3x-5) <0
TH1: \(\orbr{\begin{cases}2x< 0\\3x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0\\3x>5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}\left(ktm\right)}}\)
TH2: \(\orbr{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\left(tm\right)}}\)
vậy \(0< x< \frac{5}{3}\)
THẤY ĐÚNG CHO MK 1 NẾU KO HIỂU THÌ ib NHA
\(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
\(\Rightarrow2x\left(3x-5\right)< 0\) ( vì \(x^2+1>0\))
\(\Rightarrow\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\) hoặc \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}\)
\(\Rightarrow0< x< \frac{5}{3}\)
\(\Leftrightarrow9x^2-6x+1-10x-5+12x^2+6x-6x-3=x-1\)
\(\Leftrightarrow21x^2-17x-6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1,075\\x=-0,266\end{cases}}\)
1) 12-4x-10>9-3x
=> 2-4x>9-3x
=> -4x+3x>9-2
=>-x>7 => x<7
2) \(2x-\dfrac{13}{2}>=0\)
=> \(2x>\dfrac{13}{2}\) => x>\(\dfrac{13}{4}\)
3)6x+3x-\(2x^2\) < \(-2x^2\) +4x+1
=> 9x-\(2x^2\) <\(-2x^2\) +4x+1
=>5x<1
=>x<\(\dfrac{1}{5}\)
1) 12-2(2x+5)>3(3-x)
<=> 12-4x-10>9-3x
<=> -4x+3x>9-12+10
<=> -x>7
<=>x<-7
=>S={x|x<-7}
2) 2x-\(\dfrac{13}{2}\)≥0
=>4x-13≥0
<=> 4x≥13
<=>x≥\(\dfrac{13}{4}\)
=>S={x|x≥\(\dfrac{13}{4}\)}
3) 6x+x(3-2x)<-x(2x-4)+1
<=>6x+3x-2x2<-2x2+4x+1
<=>6x+3x<4x+1
<=>6x+3x-4x<1
<=>5x<1
<=> x<\(\dfrac{1}{5}\)
=>S={x|x<\(\dfrac{1}{5}\)}
Ta có 2x-6x+5>0=>-4x+5>0
=>-4x>-5=>x<\(\frac{5}{4}\)
Vậy tập nghiệm của bat phương trình là{x/x=\(\frac{5}{4}\)}