Tìm x, y, z thuộc N* biết : xy + yz + zx = xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)}{xy\left(z+1\right)+y\left(z+1\right)-x\left(z+1\right)-\left(z+1\right)}\\ =\dfrac{\left(z-1\right)\left(xy-y-x+1\right)}{\left(z+1\right)\left(xy+y-x-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)\left(y-1\right)}{\left(z+1\right)\left(x+1\right)\left(y-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)}{\left(z+1\right)\left(x+1\right)}\\ =\dfrac{\left(5003-1\right)\left(5001-1\right)}{\left(5003+1\right)\left(5001+1\right)}=\dfrac{5002\cdot5000}{5004\cdot5002}=\dfrac{5000}{5004}=\dfrac{1250}{1251}\)
13:
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
ko vt lại đề
(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019
=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019
=> (z-1)(xy-y-x+1)=2019
=> (z-1)(z-1)(y-1)=2019
vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1
nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}
(x-1)(y-1)(z-1)= 673.3.1=2019
=> x-1=673=>x=674
=>y-1=3=>y=4
=> z-1 =1=>z=2
Vậy x=674,y=4,z=2
Câu a thôi nhá
a) +) Xét 1 trong 3 số x,y,z bằng 0 => xyz=0
=> x+y+z=0. Mà một trong 3 số bằng 0
=> x+y=0 hoặc y+z=0 hoặc x+z=0
=> x=-y hoặc y=-z hoặc z=-x.
+) Xét x,y,x khác 0.
Vì vai trò của x,y,x là bình đẳng nên ta giả sử x<=y<=z.
=> x+y+z=xyz<= 3z
=> x+y<=3
Tự làm tiếp nhá