K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 6 2020

Đặt \(\left(\frac{1}{sinA};\frac{1}{sinB};\frac{1}{sinC}\right)=\left(a;b;c\right)\Rightarrow a;b;c>0\), áp dụng BĐT AM-GM

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{3}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế với vế và rút gọn: \(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\Leftrightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(\Leftrightarrow\left(1+\frac{1}{sinA}\right)\left(1+\frac{1}{sinB}\right)\left(1+\frac{1}{sinC}\right)\ge\left(1+\frac{1}{\sqrt[3]{sinA.sinB.sinC}}\right)^3\)

Dấu "=" xảy ra khi và chỉ khi \(\frac{1}{sinA}=\frac{1}{sinB}=\frac{1}{sinC}\Leftrightarrow\)

\(A=B=C=60^0\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

Thay dấu "=" thành $\geq $ ta được BĐT Holder. Dấu "=" xác định tại $\sin A=\sin B=\sin C$ hay tam giác $ABC$ đều.

Chứng minh cụ thể như sau:

\(\frac{1}{1+\frac{1}{\sin A}}+\frac{1}{1+\frac{1}{\sin B}}+\frac{1}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{1}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

\(\frac{\frac{1}{\sin A}}{1+\frac{1}{\sin A}}+\frac{\frac{1}{\sin B}}{1+\frac{1}{\sin B}}+\frac{\frac{1}{\sin C}}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{\frac{1}{\sin A\sin B\sin C}}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

Cộng theo vế và rút gọn:

\(\Rightarrow 3\geq 3\frac{1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}}}{\sqrt[3]{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

\(\Rightarrow (1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})\geq (1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}})^3\)

Dấu "=" xảy ra (như đề bài) khi \(\sin A=\sin B=\sin C\Rightarrow \angle A=\angle B=\angle C=60^0\)

30 tháng 6 2019

phức tạp thật!

6 tháng 11 2016

Ta có từ n3 + 1 đến (n + 1)3 - 1 có

(n + 1)3 - 1 - n3 - 1 + 1 = 3n2 + 3n số có phần nguyên bằng n

Áp dụng vào cái ban đầu ta có

\(=\frac{3.1^2+3.1}{1}+\frac{3.2^2+3.2}{2}+...+\frac{3.2011^2+3.2011}{2011}\)

= 3.1 + 3 + 3.2 + 3 + ...+ 3.2011 + 3

= 3.2011 + 3(1 + 2 +...+ 2011)

= 6075231

5 tháng 11 2016

to thấy bài dễ mà 

NV
6 tháng 5 2019

\(2sinB.sinC=1+cosA\Leftrightarrow cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B-C=0\Rightarrow B=C\)

\(sinA=\frac{cosA+cosB}{sinB+sinC}=\frac{cosA+cosB}{2sinB}\) (do \(B=C\))

\(\Leftrightarrow2sinA.sinB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)-cos\left(A+B\right)=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosC=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)=cosB\)

\(\Rightarrow A-B=B\Rightarrow A=2B=B+C\)

\(A+B+C=180^0\Rightarrow2A=180^0\Rightarrow A=90^0\)

\(\Rightarrow\Delta ABC\) vuông cân tại A

20 tháng 11 2016

a/ Ta có 

\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)

Ta lại có 

\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)

\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)

Áp dụng vào bài toán ta được

\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)

20 tháng 11 2016

b/

\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)

\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)

\(=\frac{1}{3}\)

Dấu = xảy ra khi x = y

22 tháng 2 2022

Đặt \(abc=k^3\), khi đó tồn tại các số thực dương x,y,z sao cho:

\(a=\frac{ky}{x};b=\frac{kz}{y};c=\frac{kx}{z}\)

Khi đó bất đẳng thức cần chứng minh tương đương:

\(\frac{1}{\frac{ky}{x}\left(\frac{kz}{y}+1\right)}+\frac{1}{\frac{kz}{y}\left(\frac{kx}{z}+1\right)}+\frac{1}{\frac{kx}{z}\left(\frac{ky}{x}+1\right)}\ge\frac{3}{k\left(k+1\right)}\)

Hay \(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\ge\frac{3}{k+1}\)

Áp dụng bất đẳng thức Bunhiacopxki ta được:

\(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\)

\(=\frac{x^2}{x\left(y+kz\right)}+\frac{y^2}{y\left(z+kx\right)}+\frac{z^2}{z\left(x+ky\right)}\ge\frac{\left(x+y+z\right)^2}{x\left(y+kz\right)+y\left(z+kx\right)+z\left(x+ky\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(k+1\right)\left(xy+yz+zx\right)}\ge\frac{3}{k+1}\)

Vậy bất đẳng thức được chứng minh, dấu "=" xảy ra khi \(a=b=c\)

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ:...
Đọc tiếp

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ: ...

\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)

\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)

1
23 tháng 5 2019

hỏi j v

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

26 tháng 2 2017

Đặt \(A=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)\left(11-\sqrt{113}\right)....\left(11-\sqrt{104}\right)\)

\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-\sqrt{121}\right)....\left(11-\sqrt{104}\right)\)

\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-11\right)....\left(11-\sqrt{104}\right)\)

\(=0\)

Do đó biểu thức trên đầu bài bằng 0

26 tháng 2 2017

bạn ơi, trong dãy này không có số \(\sqrt{121}\)đâu