K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có DM=DG \Rightarrow GM=2 GD.

Ta lại có G là giao điểm của BD và CE \Rightarrow G là trọng tâm của tam giác ABC

\Rightarrow BG=2 GD.

Suy ra BG=GM.

Chứng minh tương tự ta được CG=GN.

b) Xét tam giác GMN và tam giác GBC có GM=GB (chứng minh trên);

\widehat{MGN}=\widehat{BGC} (hai góc đối đỉnh);

GN=GC (chứng minh trên).

Do đó \triangle GMN=\triangle GBC (c.g.c)

\Rightarrow MN=BC (hai cạnh tương ứng).

Theo chứng minh trên \triangle GMN=\triangle GBC \Rightarrow \widehat{NMG}=\widehat{CBG} (hai góc tương ứng).

Mà \widehat{NMG} và \widehat{CBG} ờ vị trí so le trong nên MN // BC.

20 tháng 4 2023

a) Ta có ��=��⇒��=2��.

Ta lại có  là giao điểm của �� và ��⇒� là trọng tâm của tam giác ���

⇒��=2��.

Suy ra ��=��.

Chứng minh tương tự ta được ��=��.

b) Xét tam giác ��� và tam giác ��� có ��=�� (chứng minh trên);

���^=���^ (hai góc đối đỉnh);

��=�� (chứng minh trên).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

Theo chứng minh trên △���=△���⇒���^=���^ (hai góc tương ứng).

Mà ���^ và ���^ ờ vị trí so le trong nên �� // ��.

a) Xét ΔGDB và ΔMDC có 

DG=DM(gt)

\(\widehat{GDB}=\widehat{MDC}\)(hai góc đối đỉnh)

DB=DC(D là trung điểm của BC)

Do đó: ΔGDB=ΔMDC(c-g-c)

Suy ra: \(\widehat{DGB}=\widehat{DMC}\)(hai góc tương ứng)

mà \(\widehat{DGB}\) và \(\widehat{DMC}\) là hai góc ở vị trí so le trong

nên BG//MC(Dấu hiệu nhận biết hai đường thẳng song song)

hay CM//BE(Đpcm)

a: Gọi G là trọng tâm, M là trung điểm của BC

=>AG=2/3AM

BM+BE=EM

CM+CF=MF

mà BM=CM; BE=CF

nên EM=MF

=>M là trung điểm củaEF

Xet ΔAEF có

AM là trung tuyến

AG=2/3AM

=>G là trọng tâm của ΔAEF

b: G là trọng tâm cùa ΔAEF

=>N là trung điểm của AF

Xét ΔAEF có FM/FE=FN/FA

nên MN//AE và MN=1/2AE

Xét ΔGAE có GH/GA=GI/GE

nên HI//AE và HI=1/2AE
=>MN//HI và MN=HI

14 tháng 6 2020

tự kẻ hình nghen:33333

a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC

=> EG=1/3BE, BG=2/3BE

=> GD=1/3AD, AG=2/3AD

=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE

=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD

b) xét tam giác AGB và tam giác MGN có

GN=BG(cmt)

GM=AG(cmt)

AGB=MGN( đối đỉnh)

tam giác AGB=tam giác MGN (cgc)

MN=AB( hai cạnh tương ứng)

=> BAG=GMN( hai góc tương ứng)

mà BAG so le trong với GMN=> AB//MN