Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có .
Ta lại có là giao điểm của và là trọng tâm của tam giác
.
Suy ra .
Chứng minh tương tự ta được .
b) Xét tam giác và tam giác có (chứng minh trên);
(hai góc đối đỉnh);
(chứng minh trên).
Do đó (c.g.c)
(hai cạnh tương ứng).
Theo chứng minh trên (hai góc tương ứng).
Mà và ờ vị trí so le trong nên // .
a) Ta có .
Ta lại có là giao điểm của và là trọng tâm của tam giác
.
Suy ra .
Chứng minh tương tự ta được .
b) Xét tam giác và tam giác có (chứng minh trên);
(hai góc đối đỉnh);
(chứng minh trên).
Do đó (c.g.c)
(hai cạnh tương ứng).
Theo chứng minh trên (hai góc tương ứng).
Mà và ờ vị trí so le trong nên // .
a) Xét ΔGDB và ΔMDC có
DG=DM(gt)
\(\widehat{GDB}=\widehat{MDC}\)(hai góc đối đỉnh)
DB=DC(D là trung điểm của BC)
Do đó: ΔGDB=ΔMDC(c-g-c)
Suy ra: \(\widehat{DGB}=\widehat{DMC}\)(hai góc tương ứng)
mà \(\widehat{DGB}\) và \(\widehat{DMC}\) là hai góc ở vị trí so le trong
nên BG//MC(Dấu hiệu nhận biết hai đường thẳng song song)
hay CM//BE(Đpcm)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Cho tam giác ABC cân tại A. Ba đường trung tuyến AD, BM, CN cắt nhau tại G. Trên tia AG xác định điểm E sao cho G là trung điểm của AE.a. CM: BM = CN
b. CM: DG = DE; CE // BM
c. Cho CE = 8cm. Hãy tính độ dài 2 đường trung tuyến BM, CN