K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có DM=DG \Rightarrow GM=2 GD.

Ta lại có G là giao điểm của BD và CE \Rightarrow G là trọng tâm của tam giác ABC

\Rightarrow BG=2 GD.

Suy ra BG=GM.

Chứng minh tương tự ta được CG=GN.

b) Xét tam giác GMN và tam giác GBC có GM=GB (chứng minh trên);

\widehat{MGN}=\widehat{BGC} (hai góc đối đỉnh);

GN=GC (chứng minh trên).

Do đó \triangle GMN=\triangle GBC (c.g.c)

\Rightarrow MN=BC (hai cạnh tương ứng).

Theo chứng minh trên \triangle GMN=\triangle GBC \Rightarrow \widehat{NMG}=\widehat{CBG} (hai góc tương ứng).

Mà \widehat{NMG} và \widehat{CBG} ờ vị trí so le trong nên MN // BC.

20 tháng 4 2023

a) Ta có ��=��⇒��=2��.

Ta lại có  là giao điểm của �� và ��⇒� là trọng tâm của tam giác ���

⇒��=2��.

Suy ra ��=��.

Chứng minh tương tự ta được ��=��.

b) Xét tam giác ��� và tam giác ��� có ��=�� (chứng minh trên);

���^=���^ (hai góc đối đỉnh);

��=�� (chứng minh trên).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

Theo chứng minh trên △���=△���⇒���^=���^ (hai góc tương ứng).

Mà ���^ và ���^ ờ vị trí so le trong nên �� // ��.

a) Xét ΔGDB và ΔMDC có 

DG=DM(gt)

\(\widehat{GDB}=\widehat{MDC}\)(hai góc đối đỉnh)

DB=DC(D là trung điểm của BC)

Do đó: ΔGDB=ΔMDC(c-g-c)

Suy ra: \(\widehat{DGB}=\widehat{DMC}\)(hai góc tương ứng)

mà \(\widehat{DGB}\) và \(\widehat{DMC}\) là hai góc ở vị trí so le trong

nên BG//MC(Dấu hiệu nhận biết hai đường thẳng song song)

hay CM//BE(Đpcm)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

14 tháng 2 2022

Cho tam giác ABC cân tại A. Ba đường trung tuyến AD, BM, CN cắt nhau tại G. Trên tia AG xác định điểm E sao cho G là trung điểm của AE.a. CM: BM = CN

b. CM: DG = DE; CE // BM

c. Cho CE = 8cm. Hãy tính độ dài 2 đường trung tuyến BM, CN