K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2022

\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)

Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)

               \(\Leftrightarrow m>-5\) (1)

Để \(y>0\)  \(\Leftrightarrow40-6m< 0\) 

                 \(\Leftrightarrow m>\dfrac{20}{3}\) (2)

\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)

 Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)

 

14 tháng 5 2022

bá cháy cj ơi , 1vote

26 tháng 3 2019

Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4 Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)  Câu 4: Cho tam...
Đọc tiếp

Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt

Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4

Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\) 

Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)

a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)

b) Tìm x để ba điểm B,I,M thẳng hàng

4
NV
14 tháng 12 2020

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

NV
14 tháng 12 2020

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

9 tháng 5 2017


4 tháng 6 2019

Đáp án A

Để hệ vô nghiệm thì 2/m+2=3/m+1<>4/3

=>3m+6=2m+2 và 3/m+1<>4/3

=>m=-4 và 3/-3<>4/3(luôn đúng)

=>m=-4

12 tháng 5 2023

`{(2x+3y=4),((m+2)x+(m+1)y=3):}` vô nghiệm

`<=>[m+2]/2=[m+1]/3 ne 3/4`

`<=>{(3m+6=2m+2),(4m+8 ne 6),(4m+4 ne 9):}`

`<=>{(m=-4),(m ne -1/2),(m ne 5/4):}`

`<=>m=-4`

7 tháng 1 2021

Giải 

Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:

(m-1)(2-2y) + y =2

<=> ( 2m - 3)y= 2m-4 (3)

Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.

Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)

y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)

Vậy có hai giá trị m thỏa mãn:1,2.

 

7 tháng 1 2021

Thanks bạn nhiều :))

 

13 tháng 1 2022

\(\left\{{}\begin{matrix}\sqrt{2x}+\sqrt{3-y}=m\left(1\right)\\\sqrt{2y}+\sqrt{3-x}=m\left(2\right)\end{matrix}\right.\) \(\left(0\le x,y\le3\right)\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Leftrightarrow\dfrac{2x-2y}{\sqrt{2x}+\sqrt{2y}}+\dfrac{3-y-3+x}{\sqrt{3-y}+\sqrt{3-x}}=0\Leftrightarrow\left(x-y\right)\left(\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(3\right)\\\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\left(1\right)và\left(3\right)\Rightarrow\sqrt{2x}+\sqrt{3-x}=m\)

\(m^2=x+3+2\sqrt{2x\left(3-x\right)}\ge3\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{3}\\m\le-\sqrt{3}\end{matrix}\right.\)\(\left(4\right)\)

\(m\le\sqrt{3\left(x+3-x\right)}=3\left(5\right)\)

\(\left(4\right)\left(5\right)\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)

NV
13 tháng 1 2022

Trừ vế cho vế:

\(\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Rightarrow\dfrac{\sqrt{2}\left(x-y\right)}{\sqrt{x}+\sqrt{y}}+\dfrac{x-y}{\sqrt{3-y}+\sqrt{3-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\)

\(\Leftrightarrow x=y\)

Thế vào pt đầu:

\(\sqrt{2x}+\sqrt{3-x}=m\)

Ta có: \(\sqrt{2.x}+\sqrt{1.\left(3-x\right)}\le\sqrt{\left(2+1\right)\left(x+3-x\right)}=3\)

\(\sqrt{2x}+\sqrt{3-x}=\sqrt{x}+\sqrt{3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{x+3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{3}\)

\(\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)

NV
1 tháng 6 2020

ĐKXĐ: \(0\le x;y\le3\)

Trừ vế cho vế: \(\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Leftrightarrow\frac{2\left(x-y\right)}{\sqrt{2x}+\sqrt{2y}}+\frac{x-y}{\sqrt{3-y}+\sqrt{3-x}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x}+\sqrt{2y}}+\frac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\)

\(\Leftrightarrow x=y\)

Thay vào pt đầu: \(\sqrt{2x}+\sqrt{3-x}=m\)

\(\left(\sqrt{2x}+\sqrt{3-x}\right)^2\le\left(2+1\right)\left(x+3-x\right)=9\)

\(\Rightarrow\sqrt{2x}+\sqrt{3-x}\le3\)

\(\sqrt{2x}+\sqrt{3-x}\ge\sqrt{2x+3-x}=\sqrt{3+x}\ge\sqrt{3}\)

\(\Rightarrow\sqrt{3}\le m\le3\) mà m nguyên \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\) \(\Rightarrow\sum m=5\)

NV
8 tháng 4 2022

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)