Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Cách giải:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = 1 4 x 4 - 2 x 2 + 3
và đường thẳng y = m 4
Từ đồ thị hàm số y = 1 4 x 4 - 2 x 2 + 3 ta suy ra đồ thị hàm số y = 1 4 x 4 - 2 x 2 + 3 có hình dạng như sau:
Dựa vào đồ thị hàm số ta thấy để đường thẳng y = m 4 cắt đồ thị hàm số y = 1 4 x 4 - 2 x 2 + 3 tại 8 điểm phân biệt
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Đáp án C.
- Lấy đối xứng phần đồ thị hàm số y = f(x) nằm phía dưới trục hoành lên phía trên trục hoành ta được đồ thị hàm số y = |f(x)| (như hình bên). - Số nghiệm của phương trình |f(x)| = m là số giao điểm của đồ thị hàm số y = |f(x)| với đường thẳng y = m. Phương trình |f(x)| = m có 6 nghiệm thực phân biệt ⇔ 1 < m < 2.
Đáp án A