|x+1|+|2x|=3
Các bạn giúp mình bài này với mai ktra 1 tiết rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chịu bạn văn nghị luận thoy để tối cô lan gợi ý cho bạn làm nha
c) \(\left(x+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{x^2}{x}+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{x^2+y}{x}\right)^3\)
\(=\dfrac{x^6+3x^4y+3x^2y^3+y^3}{x^3}\)
f) \(\left(x-\dfrac{1}{2}\right)^3\)
\(=x^3-3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3\)
\(=x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}\)
h) \(\left(x+\dfrac{y^2}{2}\right)^3\)
\(=\left(\dfrac{2x}{2}+\dfrac{y^2}{2}\right)^3\)
\(=\left(\dfrac{2x+y^2}{2}\right)^3\)
\(=\dfrac{8x^3+12x^2y^2+6xy^4+y^6}{8}\)
k) \(\left(x-\dfrac{1}{3}\right)^3\)
\(=x^3-3\cdot x^2\cdot\dfrac{1}{3}+3\cdot x\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)
\(=x^3-x^2+\dfrac{x}{3}-\dfrac{1}{27}\)
m) \(\left(x+\dfrac{y^2}{3}\right)^3\)
\(=\left(\dfrac{3x}{3}+\dfrac{y^2}{3}\right)^3\)
\(=\left(\dfrac{3x+y^2}{3}\right)^3\)
\(=\dfrac{27x^3+27x^2y^2+9xy^4+y^6}{27}\)
Q) \(2\left(x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\)
\(=2\left(2x^4-x^2y+x^2y-\dfrac{1}{2}y^2\right)\)
\(=2\left(2x^4-\dfrac{1}{2}y^2\right)\)
\(=4x^4-y^2\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5.\left(x+1\right)}\)
\(A=\left(\frac{x^2+2x+1}{\left(x+1\right).\left(x-1\right)}-\frac{x^2-2x+1}{\left(x+1\right).\left(x-1\right)}\right):\frac{2x}{5.\left(x+1\right)}\)
\(A=\frac{x^2+2x+1-x+2x-1}{\left(x+1\right).\left(x-1\right)}\cdot\frac{5.\left(x+1\right)}{2x}\)
\(A=\frac{4x}{\left(x+1\right).\left(x-1\right)}\cdot\frac{5.\left(x+1\right)}{2x}=\frac{10}{x-1}\)
Kéo dài AB, AB và FC cắt nhau tại H
Vì AB vuông với AC nên BAC = 90 độ
Ta có: BAC + CAH = 180 độ( kề bù)
=> 90 + CAH = 180
=> CAH = 180 - 90
=> CAH = 90
Áp dụng tính chất tổng 3 góc của 1 tam giác ta có:
HAC + ACH + AHC = 180
=> 90 + 40 + AHC = 180
=> 130 + AHC = 180
=> AHC = 180 - 130
= 50
Suy ra góc AHC = EAB = 50 độ
mà 2 góc này ở vị trí so le trong
=> EB // FC → ĐPCM
Đây là 1 lời giải sai em
Đơn giản vì phương trình gốc không thể giải được
Điều kiện x \(\ge\frac{1}{4}\)
Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))
=> x = a2 + \(\frac{1}{4}\)
=> PT <=> 2a2 + \(\frac{1}{2}\)+ \(\sqrt{a^2+\frac{1}{4}+a}\)= 2
<=> \(\sqrt{a^2+\frac{1}{4}+a}\)= \(\frac{3}{2}-2a\)
<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2
<=> 4a4 - 7a2 - a + 2 = 0
<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0
<=> a = 0,5
<=> x = 0,5
Ta có bảng:
Từ bảng ta có:
+) TH1: \(x\le-1\)
pt <=> -3x -1 = 3 <=> x = -4/3 thỏa mãn
+) TH2: \(-1< x\le0\)
pt <=> -x + 1 = 3 <=> x = -2 loại
+) \(x>0\)
pt <=> 3x + 1 = 3 <=> x = 2/3 ( thỏa mãn )
Vậy x = -4/3 hoặc x = 2/3