K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2021

a. Bạn tự giải

b. Pt có nghiệm kép khi:

\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)

Khi đó: \(x_{1,2}=m+1=2\)

c. Do pt có nghiệm bằng 4:

\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)

\(\Leftrightarrow8-4m=0\Rightarrow m=2\)

\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)

NV
21 tháng 8 2021

Đặt \(x^2=t\) phương trình trở thành:

\(t^2-2\left(m+1\right)t+m-2=0\) (1)

a. Phương trình có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m-2\right)>0\\t_1+t_2=2\left(m+1\right)>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+m+3>0\left(\text{luôn đúng}\right)\\m>-1\\m>2\end{matrix}\right.\) 

\(\Rightarrow m>2\)

b. Do \(\Delta'=m^2+m+3>0;\forall m\) nên pt đã cho vô nghiệm khi (1) có 2 nghiệm pb đều âm

\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=2\left(m+1\right)< 0\\t_1t_2=m-2>0\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

c. Pt có đúng 2 nghiệm khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow t_1t_2=m-2< 0\Rightarrow m< 2\)

18 tháng 5 2021

Bài 2 : 

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=4\Rightarrow x_1^2+x_2^2=4+8=12\)

Ta có : \(T=x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)\)

\(=x_1^2-2x_2x_1+x_2^2-2x_1x_2=12+16=28\)

19 tháng 5 2020

a) PT có nghiệm kép nếu

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)

Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép

\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)

b) Để pt có nghiệm phân biệt đều âm thì

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)

\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)

Vậy 0<m<\(\frac{1}{2}\)

19 tháng 5 2020

định gõ ấn f5 cái thì thấy bạn làm xong r :(( 

giải nhanh quá ! 

\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m+2-\sqrt{2}\right)\)

\(=4m^2-8m+4-8m-8+8\sqrt{2}\)

\(=4m^2-16m+8\sqrt{2}-4\)

Để phương trình có nghiệm kép thì \(4m^2-16m+8\sqrt{2}-4=0\)

=>\(m^2-4m+2\sqrt{2}-1=0\)

=>\(\Delta=\left(-4\right)^2-4\left(2\sqrt{2}-1\right)=16-8\sqrt{2}+4=20-8\sqrt{2}>0\)

=>Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m=\dfrac{4-\sqrt{20-8\sqrt{2}}}{2}=2-\sqrt{5-2\sqrt{2}}\\m=2+\sqrt{5-2\sqrt{2}}\end{matrix}\right.\)

11 tháng 3 2022

\(\Delta'=\left(m+3\right)^2-\left(m^2-2\right)=6m+9+4=6m+13\)

Để pt có 2 nghiệm kép khi \(6m+13=0\Leftrightarrow m=-\dfrac{13}{6}\)

\(x_1=x_2=2\left(m+3\right)=2\left(-\dfrac{13}{6}+3\right)=\dfrac{5}{3}\)

NV
25 tháng 3 2021

\(\Leftrightarrow\left(x^2-2x+m\right)^2-x^2-\left(x^2-3x+m\right)=0\)

\(\Leftrightarrow\left(x^2-3x+m\right)\left(x^2-x+m\right)-\left(x^2-3x+m\right)=0\)

\(\Leftrightarrow\left(x^2-3x+m\right)\left(x^2-x+m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+m=0\\x^2-x+m-1=0\end{matrix}\right.\)

Pt đã cho có 4 nghiệm khi:

\(\left\{{}\begin{matrix}\Delta_1=9-4m\ge0\\\Delta_2=1-4\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{9}{4}\\m\le\dfrac{5}{4}\end{matrix}\right.\) \(\Rightarrow m\le\dfrac{5}{4}\)

26 tháng 12 2021

\(a,\Leftrightarrow\Delta'\ge0\\ \Leftrightarrow\left(m+2\right)^2-\left(m^2-4\right)\ge0\\ \Leftrightarrow m^2+4m+4-m^2+4\ge0\\ \Leftrightarrow4m+8\ge0\\ \Leftrightarrow m\ge-2\\ b,\Leftrightarrow\Delta'=0\Leftrightarrow m=-2\)