K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2020

có ai không 

10 tháng 5 2020

ai làm được thì tích

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0

20 tháng 6 2021

Ta thấy pt(1) có nghiệm do ac = -1 < 0

Gọi x1 ; x2 là nghiệm của (1) , ta có : x1 + x= -5 ; x1x=-1

Gọi y1 ; y2 là các nghiệm của pt cần lập , ta được : y1 + y2 = x14 + x2; y1y2 = x14 . x24

Ta có : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12.x22

= [( x1 + x2 )2 - 2x1x2 ]2 - 2(x1x2)2 = 729 - 2 = 727

y1.y2 = x14 . x24 = ( x1 . x2 )4 = 1

Vậy pt cần lập là y2 - 727y + 1 = 0

DD
20 tháng 6 2021

\(\Delta=5^2+4=29>0\)nên phương trình có hai nghiệm phân biệt \(x_1,x_2\).

Theo Viete: 

\(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=-1\end{cases}}\)

\(x_1^4x_2^4=\left(-1\right)^4=1\)

\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left(25+2\right)^2-2=727\)

Theo định lí Viete đảo, phương trình bậc hai nhận \(x_1^4,x_2^4\)là nghiệm là: 

\(X^2-727X+1=0\)

6 tháng 4 2019

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\end{cases}}\)

Ta có \(S=y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                                                                           \(=-\frac{5}{3}+\frac{\frac{-5}{3}}{-2}=-\frac{5}{6}\)

       \(P=x_1x_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=-\frac{1}{2}\)

Khi đó y1 ; y2 là nghiệm của pt

\(Y^2-SY+P=0\) 

\(\Leftrightarrow Y^2+\frac{5}{6}Y-\frac{1}{2}=0\)

NV
12 tháng 4 2021

\(\Delta'=1+m^2-1=m^2>0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2+1\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2x_1-m^2+1=0\Rightarrow x_1^3-2x_1^2-m^2x_1+x_1=0\)

\(\Rightarrow x_1^3-2x_1^2-m^2x_1=-x_1\)

Thế vào bài toán:

\(\left(2x_1-x_2\right)\left(-x_1+2x_2\right)=-3\)

\(\Leftrightarrow-2x_1^2-2x_2^2+5x_1x_2=-3\)

\(\Leftrightarrow-2\left(x_1+x_2\right)^2+9x_1x_2=-3\)

\(\Leftrightarrow-8+9\left(-m^2+1\right)=-3\)

\(\Leftrightarrow m^2=\dfrac{4}{9}\Rightarrow m=\pm\dfrac{2}{3}\)

\(a,\) \(x^2+5x-3m=0\left(1\right)\)

 \(\Rightarrow\Delta=b^2-4ac=5^2-4.\left(-3m\right)=12m+25\)

\(Để\) phương trình \((1)\) có 2 nghiệm  \(x_1,x_2\) ta có :

\(\Leftrightarrow\Delta\ge0\Rightarrow12m+25\ge0\)

\(\Rightarrow12m\ge-25\Rightarrow m\ge\dfrac{-25}{12}\)

 

 

x1+x2=3; x1*x2=-7

B=(x1+x2)^2-2x1x2

=9-2*(-7)=23

D=(x1+x2)^3-3x1x2(x1+x2)

=3^3-3*(-7)*3

=27+63=90

F=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=10*(-7)+69

=-1

\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)

1 tháng 5 2023

mong bạn có thể giải thích chi tiết hơn

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

16 tháng 3 2022

a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)

Vậy pt luôn có 2 nghiệm 

b, để pt có 2 nghiệm pb khi m khác 1 

c, để pt có nghiệm kép khi m = 1 

d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)

Ta có \(x_1-2x_2=0\left(3\right)\)

Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)

Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)