K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2020

Đường tròn (C1) có tâm I(1;-2) bán kính \(R=\sqrt{5}\)

Đường tròn (C2) có tâm \(J\left(-1;-3\right)\) bán kính \(R=3\)

Áp dụng Pitago: \(d\left(J;d\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=\sqrt{5}\)

\(\Rightarrow d\left(I;d\right)=d\left(J;d\right)\Rightarrow d//IJ\) (dễ dàng loại trường hợp d đi qua trung điểm của IJ, vì trung điểm của IJ nằm trong (C1))

\(\overrightarrow{JI}=\left(2;1\right)\Rightarrow\) d nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình d có dạng: \(x-2y+c=0\)

\(d\left(I;d\right)=\sqrt{5}\Rightarrow\frac{\left|1.1-\left(-2\right).2+c\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\)

\(\Rightarrow\left|c+5\right|=5\Rightarrow\left[{}\begin{matrix}c=0\\c=-10\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-2y=0\\x-2y-10=0\end{matrix}\right.\)

2 tháng 5 2021

Gọi M là điểm tiếp xúc hai đường tròn.

Đường tròn đã cho có tâm \(I'=\left(1;3\right)\), bán kính \(R'=2\)

\(\Rightarrow II'=\sqrt{\left(1+4\right)^2}=5\)

\(\Rightarrow\) Bán kính đường tròn cần tìm \(R=3\)

Phương trình đường tròn: \(\left(x+4\right)^2+\left(y-3\right)^2=9\)

NV
4 tháng 6 2020

Đường tròn tâm \(I\left(1;-3\right)\) bán kính \(R=5\)

Do tiếp tuyến d vuông góc với d1 nên phương trình d có dạng:

\(4x+3y+c=0\)

d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|4.1-3.3+c\right|}{\sqrt{4^2+3^2}}=5\Leftrightarrow\left|c-5\right|=25\)

\(\Rightarrow\left[{}\begin{matrix}c=30\\c=-20\end{matrix}\right.\) có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}4x+3y+30=0\\4x+3y-20=0\end{matrix}\right.\)

NV
31 tháng 3 2023

Đường tròn (C) tâm \(I\left(-1;0\right)\) bán kính \(R=3\)

\(MN=6=2R\Rightarrow MN\) là đường kính

\(\Rightarrow\) Đường thẳng d đi qua tâm I của đường tròn

\(\Rightarrow\) Đường thẳng d là đường thẳng IA

\(\overrightarrow{IA}=\left(3;3\right)=3\left(1;1\right)\Rightarrow\) đường thẳng d nhận (1;-1) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)

NV
18 tháng 3 2021

1. Gọi \(M\left(x;y\right)\) là điểm bất kì nằm trên phân giác 

\(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\Leftrightarrow\dfrac{\left|3x-4y-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-12\right|}{\sqrt{12^2+5^2}}\)

\(\Leftrightarrow\left|39x-52y-39\right|=\left|60x+25y-60\right|\)

\(\Rightarrow\left[{}\begin{matrix}60x+25y-60=39x-52y-39\\60x+25y-60=-39x+52y+39\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+11y-3=0\\11x-3y-11=0\end{matrix}\right.\)

Xét \(3x+11y-3=0\) có vtpt \(\left(3;11\right)\)

Ta có: \(cos^{-1}\dfrac{\left|3.3-11.4\right|}{\sqrt{3^2+\left(-4\right)^2}.\sqrt{3^2+11^2}}=52^0>45^0\) (ktm)

\(\Rightarrow11x-3y-11=0\) là pt đường phân giác góc nhọn tạo bởi d1 và d2

NV
18 tháng 3 2021

2.

Phương trình d1: \(\sqrt{2}x-\sqrt{2}y+2m=0\)

Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính \(R=1\)

Đường thẳng d1 tiếp xúc với (C) khi và chỉ khi:

\(d\left(O;d_1\right)=R\)

\(\Leftrightarrow\dfrac{\left|2m\right|}{\sqrt{2+2}}=1\Leftrightarrow\left|2m\right|=2\)

\(\Rightarrow m=\pm1\)

19 tháng 8 2018

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(x+z\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left[\left(x^2-y^2\right)+\left(z^2-x^2\right)\right]+\left(x+z\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2\right)-\left(y+z\right)\left(z^2-x^2\right)+\left(x+z\right)\left(z^2-x^2\right)\)

\(=\left(x^2-y^2\right)\left(x+y-y-z\right)-\left(z^2-x^2\right)\left(y+z-x-z\right)\)

\(=\left(x^2-y^2\right)\left(x-z\right)-\left(z^2-x^2\right)\left(y-x\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x-z\right)-\left(z-x\right)\left(z+x\right)\left(y-x\right)\)

\(=-\left(y-x\right)\left(x+y\right)\left(x-z\right)+\left(x-z\right)\left(z+x\right)\left(y-x\right)\)

\(=\left(y-x\right)\left(x-z\right)\left[-\left(x+y\right)+\left(z+x\right)\right]\)

\(=\left(y-x\right)\left(x-z\right)\left(-x+y+z+x\right)\)

\(=\left(y-x\right)\left(x-z\right)\left(y+z\right)\)

NV
29 tháng 1 2021

a.

\(\overrightarrow{EF}=\left(1;-1\right)\Rightarrow d_4\) nhận (1;-1) là 1 vtpt

Phương trình \(d_4\) :

\(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)

b.

\(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtcp nên \(d_5\) nhận \(\left(2;-1\right)\) là 1 vtpt

Pt \(d_5\) : \(2\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-7=0\)

c.

\(\Delta\) nhận \(\left(-1;-3\right)\) là 1 vtcp nên \(d_6\) nhận \(\left(3;-1\right)\) là 1 vtpt

Phương trình \(d_6\) :

\(3\left(x-4\right)-1\left(y-6\right)=0\Leftrightarrow3x-y-6=0\)