K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔABC cân tại A(gt)

\(\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)

hay \(\widehat{ACB}=\frac{180^0-40^0}{2}=70^0\)

Xét ΔABC có

\(\widehat{ACB}>\widehat{BAC}\left(70^0>40^0\right)\)

mà cạnh đối diện với \(\widehat{ACB}\) là AB

và cạnh đối diện với \(\widehat{BAC}\) là BC

nên AB>BC(Định lí 2 về quan hệ giữa góc và cạnh trong tam giác)

b) Xét ΔADB và ΔADC có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD là cạnh chung

Do đó: ΔADB=ΔADC(c-g-c)

c) Ta có: ΔADB=ΔADC(cmt)

⇒DB=DC(hai cạnh tương ứng)

mà B,D,C thẳng hàng

nên D là trung điểm của BC

Xét ΔABC có

AD là đường trung tuyến ứng với cạnh BC(D là trung điểm của BC)

BE là đường trung tuyến ứng với cạnh AC(gt)

\(AD\cap BE=\left\{H\right\}\)

Do đó: H là trọng tâm của ΔABC(tính chất ba đường trung tuyến của tam giác)

hay CH đi qua trung điểm của cạnh AB(đpcm)

d) Ta có: \(\widehat{ABC}+\widehat{KBC}=\widehat{ABK}=90^0\)(tia BC nằm giữa hai tia BA,BK)

\(\widehat{ACB}+\widehat{KCB}=\widehat{ACK}=90^0\)(tia CB nằm giữa hai tia CA,CK)

\(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)

nên ΔKBC cân tại K(định lí đảo của tam giác cân)

⇔KB=KC

hay K nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: BD=CD(cmt)

nên D nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra A,D,K thẳng hàng(đpcm)

a) Xét ΔABD và ΔACD có

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung

Do đó: ΔABD=ΔACD(c-g-c)

b) Ta có: ΔABD=ΔACD(cmt)

nên BD=CD(hai cạnh tương ứng)

hay D là trung điểm của BC

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh BC(cmt)

CF là đường trung tuyến ứng với cạnh AB(gt)

AD cắt CF tại G(gt)

Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

c) Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

Xét ΔADC có

H là trung điểm của CD(gt)

HE//AD(cùng vuông góc với BC)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔADC vuông tại D(cmt)

mà DE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(DE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay DE=EC

Xét ΔDEC có ED=EC(cmt)

nên ΔDEC cân tại E(Định nghĩa tam giác cân)

11 tháng 7 2021

Còn ý d nữa bạn .

3 tháng 5 2019

a, xét tam giác ABD và tam giác ACD có : AD chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAD = góc CAD do AD là phân giác của góc BAC (gt)

=> tam giác ABD = tam giác ACD (c-g-c)

b, tam giác ABD = tam giác ACD (câu a)

=> BD = DC (đn) mà D nằm giữa B; C 

=> D là trung điểm của BC (đn)

=> AD là trung tuyến

CF là trung tuyến

CF cắt AD tại G

=> G là trong tâm của tam giác ABC (đl)

3 tháng 5 2019

c, Ta có : tam giác EDC có EH vừa là đường trung tuyến vừa là đường cao

\(\Rightarrow\)tam giác EDC cân tại E

D, Vì EH // AD \(\Rightarrow\)theo định lí Ta - lét ta có : \(\frac{DH}{HC}=\frac{AE}{EC}\)

Mà HC = HD \(\Rightarrow\)AE = EC \(\Rightarrow\)E là trung điểm AC 

\(\Leftrightarrow\)BE là đường trung tuyến \(\Rightarrow\)Ba điểm B, G , E thẳng hàng 

24 tháng 12 2016

đề bài câu d bị sai thì phải

24 tháng 12 2016

câu d đề sai hoàn toàn

25 tháng 12 2016

A B C D

25 tháng 12 2016

a) Xét \(\Delta ADB\)\(\Delta ADC\) ta có:

\(\widehat{BAD}+\widehat{B}+\widehat{BDA}=180^o\)

\(\widehat{DAC}+\widehat{C}+\widehat{CDA}=180^o\)

\(\widehat{B}=\widehat{C}\left(gt\right)\)(*)

\(\widehat{BAD}=\widehat{DAC}\) (AD là phân giác)

\(\Rightarrow\widehat{BDA}=\widehat{CDA}\) (**)

AD là cạnh chung. (***)

Vậy: từ (*) (**) (***) ta có \(\Delta ADB\) = \(\Delta ADC\) (g.c.g)

b) Vì: \(\Delta ADB\) = \(\Delta ADC\) (cm a)

\(\Rightarrow AB=AC\) (2 cạnh tương ứng)

c) Vì: \(\Delta ADB\) = \(\Delta ADC\) (cm a)

\(\Rightarrow DB=DC\) (2 cạnh tương ưng)

Mà D thuộc BC (gt)

=> D là trung điểm của BC. (****)

Lại có: AD là tia phân giác góc A (*****)

Từ (****) và (*****) suy ra AD là đường trung trực của BC

 

a: Xét ΔABE và ΔACF có 

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

mà AB=AC

nên AH là đường trung trực của BC

=>D là trung điểm của BC

Xét ΔABC có AF/AB=AE/AC

nên EF//BC

9 tháng 7 2019

a

Tam giác ABC cân tại A có \(\widehat{A}=40^0\Rightarrow\widehat{B}=\widehat{C}=70^0\)

Do \(\widehat{C}>\widehat{A}\left(70^0>40^0\right)\Rightarrow AB>BC\)

b

Do tam giác ABC cân tại A nên đường phân giác AD đồng thời là đường trung tuyến.

Có 2 trung tuyến AD và BE cắt nhau tại H nên H là trọng tâm.

=> CH cũng là trung tuyến.

=> ĐPCM

c

Xét \(\Delta ABK\) và \(\Delta ACK\) có:

\(AB=AC\)

\(\widehat{ABK}=\widehat{ACK}=90^0\)

AK là cạnh chung

\(\Rightarrow\Delta ABK=\Delta ACK\left(ch.cgv\right)\)

\(\Rightarrow BK=CK\)

\(\Rightarrow K\) nằm trên đường trung trực của BC,A cũng nằm trên đường trung trực của BC.

Mặt khác AD đồng thời là đường trung trực.Khi đó A,H,K thẳng hàng.

3 tháng 5 2019

a) Xét ΔABD và ΔACD có:

           AD chung 

          góc ABD=góc ACD ( do AD là phân giác của góc BAC)

           AB=AC ( ΔABC cân tại A)

Do đó:ΔABD=ΔACD (c-g-c) (đpcm)

3 tháng 5 2019

  Ta có:

AD vuông góc BC(tính chất Δ vuông)

EH vuông góc BC (theo đầu bài)

=>AD//EH (cùng vuông góc với BC)

=>góc ADE=góc DEH (2 góc so le trong)

Lại có:ΔDEC cân theo câu c:

=>góc EDC=góc ECD 

mà góc ECD=góc ABD (ΔABC cân tại A)

=>góc EDC=góc ABD.

Xét ΔBAD có: góc ABD + góc BAD=90 độ (do ΔBAD vuông tại D)

 và ΔDEH có: góc EDH + góc DEH =90 độ (do ΔDEH vuông tại H)

=> góc BAD=góc DEH 

Mà góc BAD=góc DAE (AD là phân giác của góc A)

     góc ADE=góc DEH (2 góc so le trong)

=>góc DAE=góc ADE

=>ΔAED cân tại E

=>DE=AE

mà DE=EC (ΔDEC cân tại E)

=>AE=EC

=>E là trung điểm của AC

=>3 điểm B,G,E thẳng hàng (đpcm)

4 tháng 5 2018


 a) Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:

BC2= AB2 +AC2

=> BC =\(\sqrt{AB^2+AC^2}\)=\(\sqrt{5^2+12^2}\)=13 (cm)

4 tháng 5 2018

Trả lời (Tự vẽ hình)

a) \(\Delta ABC\)vuông tại A

=> Áp dụng định lý Pi-ta-go

Ta có: \(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=5^2+12^2\)

\(\Rightarrow BC^2=169\)

\(\Rightarrow BC=13\left(cm\right)\)

Vậy BC=13 (cm)

b) Xét \(\Delta ABC\&\Delta ADC\)có:

  AC chung (1)

\(\widehat{BAC}\)\(=\widehat{CDA}\)\(\left(=90^o\right)\left(2\right)\)

\(AB=AD\left(gt\right)\left(3\right)\)

(1)(2)(3)\(\Rightarrow\Delta ABC=\Delta ADC\)

Vậy \(\Delta ABC=\Delta ADC\left(đpcm\right)\)

c) Vì \(\Delta ABC=\Delta ADC\)

\(\Rightarrow\hept{\begin{cases}c_1=c_2\left(cmt\right)\\BC=AE\left(gt\right)\\CEA=c_1\end{cases}\Rightarrow\Delta AEC}\)cân 

Vậy \(\Delta AEC\)cân (đpcm)

\(\)