cho a,b,c,d là các số thực thỏa mãn b+d khác 0 và ac/(b+d) >=2
CMR pt:
(x2+ax+b)(x2+cx+d) ẩn x luôn có nghiệm
giúp mk với...mk cần gấp...
thanks all!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c và d là nghiệm của phương trình:
x 2 + a x + b ⇒ ⇒ c + d = − a ( 1 ) c d = b ( 2 )
a, b là nghiệm của phương trình:
x 2 + c x + d = 0 ⇒ ⇒ a + b = − c ( 3 ) a b = d ( 4 )
Đáp án cần chọn là: A
Lời giải:
a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)
Khi đó:
\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)
1a, hoành độ giao điểm của P và d là no pt:
1/2x^2=mx-m+1
ta có: đenta=(-m)^2-4*1/2*(m-1)
= m^2-2m+2
để P cắt d tại 2 điểm thì denta lớn hơn hoặc =0
hay m^2-2m+2 lớn hơn hoặc =0
(m-1)^2+1>hoặc =0( luôn đúng)
vậy với mọi m thì d vắt P tại 2 điểm
Xét \(x^2+ax+b=0\) (1) có \(\Delta_1=a^2-4b\)
\(x^2+cx+d=0\) (2) có \(\Delta_2=c^2-4d\)
Ta có: \(\Delta_1+\Delta_2=a^2+c^2-4\left(b+d\right)\)
- Nếu \(b+d< 0\Rightarrow-4\left(b+d\right)>0\Rightarrow\Delta_1+\Delta_2>0\)
\(\Rightarrow\) Tồn tại ít nhất một trong 2 số \(\Delta_1;\Delta_2>0\Rightarrow\) ít nhất (1) hoặc (2) có nghiệm hay pt đã cho luôn có nghiệm
- Nếu \(b+d>0\)
\(\frac{ac}{b+d}\ge2\Leftrightarrow ac\ge2\left(b+d\right)\Rightarrow2ac\ge4\left(b+d\right)\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+c^2-4\left(b+d\right)\ge a^2+c^2-2ac=\left(a-c\right)^2\ge0\)
\(\Rightarrow\) Tồn tại ít nhất 1 trong 2 số \(\Delta_1;\Delta_2\) không âm hay (1) hoặc (2) luôn có nghiệm \(\Rightarrow\) pt đã cho luôn có nghiệm