K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(ĐK:x\ge0\\ PT\Leftrightarrow10\sqrt{x}+8\sqrt{x}-11\sqrt{x}=21\\ \Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\)

24 tháng 10 2021

\(2\sqrt{25x}+\sqrt{64x}-\sqrt{121x}=21\left(x\ge0\right)\)

\(\Leftrightarrow10\sqrt{x}+8\sqrt{x}-11\sqrt{x}=21\)

\(\Leftrightarrow7\sqrt{x}=21\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\)

\(25x^2+90x+81=\left(5x+9\right)^2\)

\(64x^2-48x+9=\left(8x-3\right)^2\)

26 tháng 8 2021

a) 9-64x^2=0

=>  64x^2  = 8

=>  \(x^2=\frac{8}{64}=\frac{1}{8}\)

=> \(x=\frac{1}{\sqrt{8}}\)

 b )   25x^2  -  3  =  0

=>  25x^2  =  3 

=>  \(x^2=\frac{3}{25}\)    

=>  \(x=\frac{\sqrt{3}}{5}\)           

C)  7  -  16x^2  =0

=>  16x^2   =  7

=>  \(x^2=\frac{7}{16}\)       

=>   \(x=\frac{\sqrt{7}}{4}\)    

d)  4x^2  -  (x-4)^2 = 0

=>  4x^2  - x^2 + 8x - 16 =0

=>  3x^2 + 8x -16  =  0 

=> ( 3x^2 + 12x ) - ( 4x  +16 ) =  0 

=>  3x( x + 4 ) - 4( x + 4 ) =  0 

=>( x + 4 )( 3x - 4 ) =  0 

=>   \(\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}}\)    

=>  \(\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}\)         

e)  ( 3x + 4 )^2 - ( 2x - 5 )^2 = 0

=>  ( 3x + 4 + 2x - 5 )( 3x + 4 - 2x + 5 )  = 0

=>   ( 5x -1 ) ( x + 9 )  = 0 

=>  \(\orbr{\begin{cases}5x-1=0\\x+9=0\end{cases}}\)     

=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-9\end{cases}}\)            

26 tháng 8 2021

Trả lời:

a, \(9-64x^2=0\)

\(\Leftrightarrow\left(3-8x\right)\left(3+8x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3-8x=0\\3+8x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{8}\\x=-\frac{3}{8}\end{cases}}}\)

Vậy x = 3/8; x = - 3/8 là nghiệm của pt.

b, \(25x^2-3=0\)

\(\Leftrightarrow\left(5x-\sqrt{3}\right)\left(5x+\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-\sqrt{3}=0\\5x+\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{5}\\x=-\frac{\sqrt{3}}{5}\end{cases}}}\)

Vậy \(x=\pm\frac{\sqrt{3}}{5}\)

c, \(7-16x^2=0\)

\(\Leftrightarrow\left(\sqrt{7}-4x\right)\left(\sqrt{7}+4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{7}-4x=0\\\sqrt{7}+4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{7}}{4}\\x=-\frac{\sqrt{7}}{4}\end{cases}}}\)

Vậy \(x=\pm\frac{\sqrt{7}}{4}\)

d, \(4x^2-\left(x-4\right)^2=0\)

\(\Leftrightarrow\left(2x-x+4\right)\left(2x+x-4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}}\)

Vậy x = - 4; x = 4/3 là nghiệm của pt.

e, \(\left(3x+4\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(3x+4-2x+5\right)\left(3x+4+2x-5\right)=0\)

\(\Leftrightarrow\left(x+9\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=\frac{1}{5}\end{cases}}}\)

Vậy x = - 9; x = 1/5 là nghiệm của pt.

26 tháng 10 2021

a: \(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

26 tháng 10 2021

a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

 

2 tháng 10 2021

a) \(\sqrt{\left(2x-3\right)^2}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\left(đk:x\ge-2\right)\)

\(\Leftrightarrow8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}=20\)

\(\Leftrightarrow5\sqrt{x+2}=20\)

\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)

c) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

2 tháng 10 2021

a. \(\sqrt{\left(2x-3\right)^2}=7\)

<=> \(\left|2x-3\right|=7\)

<=> \(\left[{}\begin{matrix}2x-3=7\left(x\ge\dfrac{3}{2}\right)\\-2x+3=7\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=10\\-2x=4\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\)  ĐK: \(x\ge-2\)

<=> \(\sqrt{64\left(x+2\right)}-\sqrt{25\left(x+2\right)}+\sqrt{4\left(x+2\right)}-20=0\)

<=> \(8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}-20=0\)

<=> \(\sqrt{x+2}.\left(8-5+2\right)-20=0\)

<=> \(5\sqrt{x+2}=20\)

<=> \(\sqrt{x+2}=4\)

<=> \(\left(\sqrt{x+2}\right)^2=4^2\)

<=> \(\left|x+2\right|=16\)

<=> \(\left[{}\begin{matrix}x+2=16\left(x\ge-2\right)\\x+2=-16\left(x< -2\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=14\left(TM\right)\\x=-18\left(TM\right)\end{matrix}\right.\)

c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)             ĐK: \(x\ge3\)

<=> \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

<=> \(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)

<=> \(\left(\sqrt{x+3}-3\right).\sqrt{x-3}=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x+3}-3=0\\\sqrt{x-3}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=6\\x=3\end{matrix}\right.\)

14 tháng 8 2019

<=>   \(\sqrt{64\left(x+1\right)}-\sqrt{25\left(x+1\right)}+\sqrt{4\left(x+1\right)}=20\)

<=> \(8\sqrt{\left(x+1\right)}-5\sqrt{\left(x+1\right)}+2\sqrt{\left(x+1\right)}=20\)

<=>   . \(5\sqrt{\left(x+1\right)}=20\)

<=>  \(\sqrt{\left(x+1\right)}=4\)

=> x+1=16

=> x=15

28 tháng 9 2020

a) \(\sqrt{x^2}=7\)

\(\Leftrightarrow\left|x\right|=7\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

b) \(\sqrt{\left(x-2020\right)^2}=10\)

\(\Leftrightarrow\left|x-2020\right|=10\)

\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)

28 tháng 9 2020

c) đk: \(x\ge2\)

 \(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)

\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)

\(\Leftrightarrow12\sqrt{x-2}=x+4\)

\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow x^2-136x+304=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)

d) đk: \(x\ge-1\)

 \(\sqrt{25x+25}-2\sqrt{64x+64}=7\)

\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)

\(\Leftrightarrow-11\sqrt{x+1}=7\)

Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)

=> pt vô nghiệm