Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dòng thứ tư câu a quên chưa chuyển vế 15-9 rồi kìa phải là 45x=6 mới đúng nha
a/ \(25x^2-9=0\)
<=> \(\left(5x-3\right)\left(5x+3\right)=0\)
<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
<=> \(x^2+8x+16-x^2+8x-9=16\)
<=> \(16x+7=16\)
<=> \(16x=9\)
<=> \(x=\frac{9}{16}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)
Vậy S = {3/5 ; -3/5}
b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)
\(\Leftrightarrow9=0\left(vl\right)\)
Vậy S = \(\varnothing\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) x3 - 16x = 0
x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
x = 4
Vậy x = 0 hoặc x = 4
b) x4 -2x3 + 10x2 - 20x = 0
x3 (x - 2) + 10x(x - 2) = 0
(x - 2)(x3 + 10x) = 0
=> x - 2 = 0 hoặc x3 + 10x = 0
x = 2 x(x2 + 10) = 0
+ TH1: x = 0
+ TH2: x2 + 10 = 0
x2 = -10 (vô lí)
Vậy x = 2 hoặc x = 0
c) (2x - 3)2 = (x + 5)2
(2x)2 + 2 . 2x . 3 + 32 = x2 + 2.x.5 + 52
4x2 + 12x + 9 = x2 + 10x + 25
4x2 + 12x - x2 - 10x = 25 - 9
3x2 + 2x = 16
x(3x + 2) = 16
Đến đây bạn làm nốt câu c nhé!
a) \(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)
b) \(3x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)
c) \(4x\left(x+3\right)-x^2+9=0\)
\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)
f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)
g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)
a) 9-64x^2=0
=> 64x^2 = 8
=> \(x^2=\frac{8}{64}=\frac{1}{8}\)
=> \(x=\frac{1}{\sqrt{8}}\)
b ) 25x^2 - 3 = 0
=> 25x^2 = 3
=> \(x^2=\frac{3}{25}\)
=> \(x=\frac{\sqrt{3}}{5}\)
C) 7 - 16x^2 =0
=> 16x^2 = 7
=> \(x^2=\frac{7}{16}\)
=> \(x=\frac{\sqrt{7}}{4}\)
d) 4x^2 - (x-4)^2 = 0
=> 4x^2 - x^2 + 8x - 16 =0
=> 3x^2 + 8x -16 = 0
=> ( 3x^2 + 12x ) - ( 4x +16 ) = 0
=> 3x( x + 4 ) - 4( x + 4 ) = 0
=>( x + 4 )( 3x - 4 ) = 0
=> \(\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}\)
e) ( 3x + 4 )^2 - ( 2x - 5 )^2 = 0
=> ( 3x + 4 + 2x - 5 )( 3x + 4 - 2x + 5 ) = 0
=> ( 5x -1 ) ( x + 9 ) = 0
=> \(\orbr{\begin{cases}5x-1=0\\x+9=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-9\end{cases}}\)
Trả lời:
a, \(9-64x^2=0\)
\(\Leftrightarrow\left(3-8x\right)\left(3+8x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3-8x=0\\3+8x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{8}\\x=-\frac{3}{8}\end{cases}}}\)
Vậy x = 3/8; x = - 3/8 là nghiệm của pt.
b, \(25x^2-3=0\)
\(\Leftrightarrow\left(5x-\sqrt{3}\right)\left(5x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-\sqrt{3}=0\\5x+\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{5}\\x=-\frac{\sqrt{3}}{5}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{3}}{5}\)
c, \(7-16x^2=0\)
\(\Leftrightarrow\left(\sqrt{7}-4x\right)\left(\sqrt{7}+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{7}-4x=0\\\sqrt{7}+4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{7}}{4}\\x=-\frac{\sqrt{7}}{4}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{7}}{4}\)
d, \(4x^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(2x-x+4\right)\left(2x+x-4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}}\)
Vậy x = - 4; x = 4/3 là nghiệm của pt.
e, \(\left(3x+4\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(3x+4-2x+5\right)\left(3x+4+2x-5\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = - 9; x = 1/5 là nghiệm của pt.