Cho ΔABC, kẻ AH⊥BC tại H. CM rằng: AH<1/2(AB+AC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b)
Ta có: ΔAHB=ΔAHC(cmt)
nên HB=HC(hai cạnh tương ứng)
mà B,H,C thẳng hàng(gt)
nên H là trung điểm của BC
Xét ΔABC có
H là trung điểm của BC(cmt)
HD//AC(gt)
Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Ta có: ΔAHB vuông tại H(gt)
mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên HD=AD
Xét ΔADH có HD=AD(cmt)
nên ΔADH cân tại D(Định nghĩa tam giác cân)
a: BD\(\perp\)BA
CA\(\perp\)BA
Do đó: BD//CA
Xét ΔEAC có BD//AC
nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)
b:
AC//BD
BD//IK
Do đó: AC//IK
Xét ΔAEI có BD//EI
nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\)(1)
Xét ΔCEK có DB//EK
nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\left(2\right)\)
\(\dfrac{EB}{EA}=\dfrac{DE}{DC}\)
=>\(\dfrac{EB+EA}{EA}=\dfrac{DE+DC}{DC}\)
=>\(\dfrac{AB}{EA}=\dfrac{CE}{DC}\)(3)
Từ (1),(2),(3) suy ra \(\dfrac{DB}{EI}=\dfrac{DB}{EK}\)
=>EI=EK
a: ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
=>HB=HC
b: HB=HC=6/2=3cm
=>AH=căn 5^2-3^2=4cm
c: G là trọng tâm của ΔABC
=>AG là trung tuyến ứng với cạnh BC trongΔABC
=>A,G,H thẳng hàng
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Vậy ...
Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)
=>\(\dfrac{2.4}{HB}=\dfrac{3}{4}\)
=>\(HB=2.4\cdot\dfrac{4}{3}=3,2\left(cm\right)\)
ΔABH vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB^2=3,2^2+2,4^2=16\)
=>\(AB=\sqrt{16}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC=\dfrac{4^2}{3,2}=5\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-4^2=9\)
=>\(AC=\sqrt{9}=3\left(cm\right)\)
Chu vi tam giác ABC là:
3+4+5=12(cm)
a: Xét ΔBHA vuông tại H có
\(BA^2=BH^2+HA^2\)
hay AH=3(cm)
b: Xét ΔABH vuông tại H và ΔCBH vuông tại H có
BA=BC
BH chung
Do đó: ΔABH=ΔCBH
c: Xét ΔBIH vuông tại I và ΔBKH vuông tại K có
BH chung
\(\widehat{IBH}=\widehat{KBH}\)
Do đó: ΔBIH=ΔBKH
Suy ra: HI=HK
d: Xét ΔBAC có BI/BA=BK/BC
Do đó: IK//AC
a: Xét ΔCBA vuông tại A và ΔCDA vuông tại A có
AB=AD
AC chung
DO đó: ΔCBA=ΔCDA
Suy ra: \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phan giác của góc BCD
b: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có
CA chung
\(\widehat{HCA}=\widehat{KCA}\)
Do đó: ΔCHA=ΔCKA
Suy ra: CH=CK
c: Xét ΔCDB có
CH/CD=CK/CB
DO đó; HK//DB
help me!!!!!!!!!!!!!!