K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

\(f\left(x\right)=-x^2-2x-m\)

\(f\left(x\right)\le0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)

Xét \(\Delta\le0\)

\(\Delta=\left(-2\right)^2-4.\left(-1\right).\left(-m\right)\)

\(=4-4m\le0\Rightarrow m\ge1\)

Vậy với m\(\ge1\)thì f(x)\(\le0,\forall x\in R\)

11 tháng 12 2022

giú mới ạ mái em noppj rồikhocroi

7 tháng 11 2023

\(f\left(x\right)=-x^2-2x+m-12< 0\forall x\)

\(\Rightarrow\Delta=4+4\left(m-12\right)< 0\Leftrightarrow m< 11\)

14 tháng 11 2022

a: f(x) chiahết cho g(x)

=>\(x^4-x^2-3x^3+3x+\left(b+1\right)x^2-\left(b+1\right)+\left(a-3\right)x+2b+1⋮x^2-1\)

=>a-3=0 và 2b+1=0

=>a=3 và b=-1/2

b: A=2x^2-3x

=2(x^2-3/2x)

=2(x^2-2*x*3/4+9/16-9/16)

=2(x-3/4)^2-9/8>=-9/8

Dấu = xảy ra khi x=3/4

NV
19 tháng 1 2021

\(f\left(x\right)=\left(x+1\right)\left(x+2m-3\right)\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1< 1\\x=-2m+3\end{matrix}\right.\)

Để \(f\left(x\right)>0\) \(\forall x>1\Rightarrow-2m+3\le1\Leftrightarrow m>1\)

24 tháng 12 2021

\(\Leftrightarrow1-m=0\)

hay m=1

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$

$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$

Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$

b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$

Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$

$\Leftrightarrow x+2$ là ước của $7$

$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$

$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$

c.

Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$

$\Leftrightarrow -2(-2)^3+(-2)-m=0$

$\Leftrightarrow 14-m=0$

$\Leftrightarrow m=14$

a: ĐKXĐ: x<>-2/3

b: F=0

=>8-2x=0

=>x=4

d: F<0

=>(2x-8)/(3x+2)>0

=>x>4 hoặc x<-2/3

10 tháng 4 2021

\(f(x)>0 \leftrightarrow 2x-m > 0 \leftrightarrow x> \frac{m}{2} để f(x) >0 với mọi x >1 thì \frac{m}{2} \le 1 \leftrightarrow m \le 2\)

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)