K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Đặt \(a+b-c=x;b+c-a=y;a+c-b=z\)

BĐT <=> \(\left(x+y+z\right)^3xyz\le27.\left(\frac{x+z}{2}\right)^2\left(\frac{y+z}{2}\right)^2\left(\frac{x+y}{2}\right)^2\)

<=> \(64xyz\left(x+y+z\right)^3\le\left[\left(x+y\right)\left(y+z\right)\left(x+z\right)\right]^2\)(1)

Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left[xy\left(x+y\right)+...+3xyz\right]\)

<=> \(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)\ge6xyz\)(luôn đúng )

 vì \(VT\ge3\sqrt[3]{x^2y^2z^2.\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge6xyz\)

Khi đó BĐT (1)

<=> \(64.xyz\left(x+y+z\right)^3\le27\left[\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\right]^2\)

<=> \(3xyz\left(x+y+z\right)\le\left(xy+yz+xz\right)^2\)

<=> \(x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)\)(BĐT Cosi) 

=> BĐT được Cm

Dấu bằng xảy ra khi a=b=c

20 tháng 4 2020

Mình có cách khác

bđt đồng bật nên t chuẩn hóa \(a+b+c=1\)

Ta biến doi vế trái về:      \(\left[\left(a+b\right)^2-c^2\right]\left[\left(b+c\right)^2-a^2\right]\left[\left(c+a\right)^2-b^2\right]\)

                                 \(=\left[\left(1-c\right)^2-c^2\right]\left[\left(1-a\right)^2-a^2\right]\left[\left(1-b\right)^2-b^2\right]\)

Giờ ta cần chứng minh:\(\left[\left(1-c\right)^2-c^2\right]\left[\left(1-a\right)^2-a^2\right]\left[\left(1-b^2\right)-b^2\right]\le27a^2b^2c^2\)

Ta xét :\(0< a,b,c< \frac{1}{3}\)(*)

\(\Rightarrow a+b+c< 1\) 

vì \(a+b+c=1\)nên (*) vô lý

Ta xét:\(\frac{1}{3}\le a,b,c< 1\)

Đến đây ta thấy giữa các biến có sự riêng biệt nên ta xét:

\(3a^2-\left[\left(1-a\right)^2-a^2\right]=\left(3a-1\right)\left(a+1\right)\ge0\)

 \(\Rightarrow3a^2\ge\left(1-a\right)^2-a^2\)

Tương tự:\(3b^2\ge\left(1-b\right)^2-b^2\)

                \(3c^2\ge\left(1-c\right)^2-c^2\)

nhan các vế bđt lại với nhau ta có điều phải chứng minh

Đến đây ta có thể suy ra điều phải chứng minh

vài lời nhắn:

Mình không chắt về cách xét của mình nữa 

1 tháng 3 2022

Xét: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\ge0\) nên ta có thể chứng minh được:

\(\left(a+b-c\right)\ge0;\left(b+c-a\right)\ge0;\left(c+a-b\right)\ge0\)

Đặt: \(x=a+b-c;y=b+c-a;z=c+a-b\)

\(\Rightarrow a=\frac{x+z}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)

\(\Rightarrow64xyz\left(x+y+z\right)^3\le27\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\)

Ta có:

\(3xyz\left(x+y+z\right)\le\left(xy+yz+zx\right)^2\)

\(\Rightarrow64\cdot3xyz\left(x+y+z\right)^3\le64\left(x+y+z\right)^2\left(xy+yz+zx\right)^2\)

Vậy ta cần chứng minh:

\(64\left(x+y+z\right)^2\left(xy+yz+zx\right)^2\le3\cdot27\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

Lấy căn bậc 2 của 2 vế ta được:

\(9\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\left(x+y+z\right)\left(xy+yz+zx\right)\)

Đến đây bài toán được chứng minh.

NV
24 tháng 5 2021

Bài này có bạn giải rồi:

Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24

NV
20 tháng 12 2020

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3+\dfrac{2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge5-\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)

Do \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}=\dfrac{2a^2}{ab+ac}+\dfrac{2b^2}{bc+ab}+\dfrac{2c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)

Điều này hiển nhiên đúng do:

\(VT=\dfrac{2}{3}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}+\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

\(VT\ge2\sqrt{\dfrac{12\left(a+b+c\right)^2\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=5\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
13 tháng 1

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

13 tháng 1

Anh giúp em câu này ạ, câu này hơi khó anh ạ, làm chắc cũng lâu, có gì anh để mai cũng được ạ! 

https://hoc24.vn/cau-hoi/cho-hinh-chop-sabcd-co-day-la-hinh-binh-hanh-m-va-p-la-hai-diem-lan-luot-di-dong-tren-ad-va-sc-sao-cho-mamd-pspc-x-x0-mat-phang-a-di-qua-m-va-song-song-voi-sab-cat-hinh-chop-sabcd-t.8753881358034

NV
28 tháng 6 2021

Chuẩn hóa \(a+b+c=3\)

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\dfrac{a^2+6a+9}{3\left(a^2-2a+3\right)}=\dfrac{1}{3}\left(1+\dfrac{8a+6}{\left(a-1\right)^2+2}\right)\le\dfrac{1}{3}\left(1+\dfrac{8a+6}{2}\right)\)

Tương tự và cộng lại:

\(VT\le\dfrac{1}{3}\left(3+\dfrac{8\left(a+b+c\right)+18}{2}\right)=8\) (đpcm)

28 tháng 6 2021

Tuyệt :>

29 tháng 3 2021

\(\Leftrightarrow\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}-2+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}-2+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}-2\le\dfrac{3}{2}-6\)

\(\Leftrightarrow\dfrac{b^2+2ac}{a\left(b+c\right)}+\dfrac{c^2+2ab}{b\left(c+a\right)}+\dfrac{a^2+2bc}{c\left(a+b\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\dfrac{b^2}{ab+ac}+\dfrac{c^2}{bc+ab}+\dfrac{a^2}{ac+bc}+\dfrac{2c^2}{bc+c^2}+\dfrac{2a^2}{ac+a^2}+\dfrac{2b^2}{ab+b^2}\ge\dfrac{9}{2}\)

Ta có:

\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}+\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(\Leftrightarrow VT\ge\left(a+b+c\right)^2\left(\dfrac{1}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}\right)\)

\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)+2\left(a^2+b^2+c^2+ab+bc+ca\right)}\)

\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\dfrac{9}{2}\)

NV
28 tháng 6 2021

Đề bài sai với \(a=b=c=2\)

28 tháng 6 2021

Có xóa luôn câu hỏi không ạ?