Tìm ƯCLN của 9n+24 và 3n+4 với n thuộc N
Làm nhanh nhé mik cần gấp
ai làm nhanh đúng tick luôn
Cảm ơn!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm ƯCLN của 9n+24 và 3n+4 với n thuộc N
Làm nhanh nhé mik cần gấp
ai làm nhanh đúng tick luôn
Cảm ơn!!
Gọi d là ƯC(2n - 1; 9n + 4)
\(\Rightarrow\hept{\begin{cases}2n-1⋮d\\9n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}9\left(2n-1\right)⋮d\\2\left(9n+4\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}18n-9⋮d\\18n+8⋮d\end{cases}}}}\)
=> ( 18n - 9 ) - ( 18n + 8 ) chia hết cho d
=> 18n - 9 - 18 - 8 chia hết cho d
=> ( 18n - 18n ) - ( 9 - 8 ) chia hết cho d
=> 0 - 1 chia hết cho d
=> -1 chia hết cho d
=> d = 1 hoặc d = -1
=> ƯCLN(2n - 1; 9n + 4) = 1
Gọi UCLN của ( 2n-1;9n+4) là A
Ta có: \(2n-1⋮A\)\(\Rightarrow\)\(9\left(2n-1\right)⋮A\)\(\Leftrightarrow\)\(18n-9⋮A\)(1)
\(9n+4⋮A\)\(\Rightarrow2\left(9n+4\right)⋮A\Leftrightarrow18n+8⋮A\)(2)
\(\left(1\right)\left(2\right)\Rightarrow\left(18n+8\right)-\left(18n-9\right)⋮A\)
\(\Leftrightarrow17⋮A\)
\(\Rightarrowđpcm\)
Gọi d = ƯCLN(2n + 3; 3n + 4)
⇒ (2n + 3) ⋮ d và (3n + 4) ⋮ d
*) (2n + 3) ⋮ d
⇒ 3(2n + 3) ⋮ d
⇒ (6n + 9) ⋮ d (1)
*) (3n + 4) ⋮ d
⇒ 2(3n + 4) ⋮ d
⇒ (6n + 8) ⋮ d (2)
Từ (1) và (2) suy ra:
(6n + 9 - 6n - 8) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy ƯCLN(2n + 3; 3n + 4) = 1
Tìm n thuộc Z sao cho:
n+6 là ước số của 9n+74
Mik đang gấp lắm nhé!!! Mik sẽ tick bạn nào nhanh nhé .
n + 6 là ước của 9n + 74
=> 9n + 74 ⋮ n + 6
=> 9n + 54 + 20 ⋮ n + 6
=> 9(n + 6) + 20 ⋮ n + 6
9(n + 6) ⋮ n + 6
=> 20 ⋮ n + 6
=> n + 6 thuộc Ư(20)
=> n + 6 thuộc {-1; 1; -2; 2; -4; 4; -5; 5; -10; 10; -20; 20}
=> n thuộc {-7; -5; -8; -4; -10; -2; -11; -1; -16; 4; -26; 14}
vậy_
\(\frac{n-3}{n+2}\inℤ\Leftrightarrow n-3⋮n+2\)
=> n + 2 - 5 ⋮ n + 2
n + 2 ⋮ n + 2
=> 5 ⋮ n + 2
=> n + 2 thuộc {-1; 5; 1; -5}
=> n thuộc {-3; 3; -1; -7}
vậy_
Ta có ƯCLN ( 2n+3 ; 3n+4) suy ra 3(2n+3)-2(3n+4) chia hết cho d
suy ra (6n +9)-(6n +4) chia hết cho d
suy ra 1 chia hết cho d
Vậy d=1
Gọi d là ƯCLN(9n + 24; 3n + 4)
\(\Rightarrow\hept{\begin{cases}9n+24⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}9n+24⋮d\\3\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}9n+24⋮d\\9n+12⋮d\end{cases}}}\)
=> ( 9n + 24 ) - ( 9n + 12 ) chia hết cho d
=> 9n + 24 - 9n - 12 chia hết cho d
=> ( 9n - 9n ) + ( 24 - 12 ) chia hết cho d
=> 0 + 12 chia hết cho d
=> 12 chia hết cho d
=> d thuộc Ư(12) = { -12 ; -6 ; -4 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
mà d là số lớn nhất
=> d = 12
=> ƯCLN(9n + 24; 3n + 4) = 12
* K dám chắc *
=>