giải phương trình :
\((1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2011}+\frac{1}{2012})503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \( A = 1 + \dfrac{{2014}}{2} + \dfrac{{2015}}{3} + ... + \dfrac{{4023}}{{2011}} + \dfrac{{4024}}{{2012}}\\ \)
\(\Rightarrow A - 2012 = \left( {\dfrac{{2014}}{2} - 1} \right) + \left( {\dfrac{{2015}}{3} - 1} \right) + ... + \left( {\dfrac{{4024}}{{2012}} - 1} \right)\\ \Rightarrow A - 2012 = \dfrac{{2012}}{2} + \dfrac{{2012}}{3} + ... + \dfrac{{2012}}{{2012}}\\ \Rightarrow A - 2012 = 2012\left( {\dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow A = 2012\left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow \left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)503x = 2012\left( {1 + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow x = \dfrac{{2012}}{{503}} = 4 \)
từng bước bao gồm cả lập luân luôn
a)\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (1)
\(A=\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (có 2011 số hạng)
nếu ta trừ một vào từng số hạng được tử số giống nhau
\(A-2011=\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{4024}{2012}-1\right)\)
\(A-2011=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}=2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(A-2011+2012=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)công 2012 hai vế
\(A+1=VP=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\left(1\right)\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\left(2\right)\)
Chia cả hai vế (2) cho: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\Rightarrow503x=2012\)
\(x=\frac{2012}{503}\)
mình cố tình đặt A phân ra cho bạn dẽ hiểu: Nếu ko từ vế phải =1+2011+2012(1/2+...1/2012) =2012(1+1/2+...+1/2012) luôn không dài vậy
\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)
\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)
\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)
1/
\(1+\frac{2014}{2}+...+\frac{4024}{2012}=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{2012}{2012}\right)\)
\(=2012+2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)
Phương trình đã cho tương đương:
\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)
\(\Leftrightarrow503x=2012\)
\(\Leftrightarrow x=4\)
2/
\(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}+\frac{58}{57}+2x-2=2x+\frac{7}{3}+5x-\frac{8}{4}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}+\left(1+\frac{1}{57}\right)-2-\frac{7}{3}+\frac{8}{4}=5x\)
\(\Leftrightarrow\)\(5x=\frac{17}{3}\Leftrightarrow x=\frac{17}{15}\)
3/
Ta có: \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{n\left(n+2\right)}\right)\)\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.......\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(=2.\frac{n+1}{n+2}
\(\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2013}{1}+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}-2012}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2013}{1}-1\right)+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4024}{2012}-1\right)}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}\)
\(=\frac{1}{2012}\)
Ủng hộ mk nha ^_-
ở tử số ta làm thế này
\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)
\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)
\(\frac{TS}{MS}=2015\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\cdot503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}\)
\(\Leftrightarrow503x=\frac{1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)
\(\Leftrightarrow503x=\frac{\frac{2014}{2}-1+\frac{2015}{3}-1+...+\frac{4024}{2012}-1+2012}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)
\(\Leftrightarrow503x=\frac{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}+2012}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)
\(\Leftrightarrow503x=\frac{2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)
\(\Leftrightarrow503x=2012\)
\(\Leftrightarrow x=\frac{2012}{503}\)