cho da thuc a thoa man \(A=\left(2x+y^2\right)=8x^3+y^6\) tìm A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) chỉ cần thay đại X và Y làm sao cho thõa rồi thay là được. Như trường hợp này ta có thể thay X=2 và
Y=\(\sqrt{2}\)
thay vào ta được A= - 8
câu b) Vì A(x) chia hết cho B(x) và C(x) nên A(x) chia hết cho B(x).C(x)=(x-3)(2x+1)=\(2x^2-5x-3\)
a=-5 và b=-3
\(\Rightarrow\)thay vào ta tính dược 3a-2b = 3.(-5)-2.(-3)= -15+6 = -9
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)
Mình sẽ viết tổng quát A thê này nhé:
\(A=\left(xy^2\right)\left(x^5y^4\right)\left(x^9y^6\right)...\left(x^{4n-3}y^{2n}\right)\)(giả sử A có n nhân tử)
Theo đề bài ta có:
\(\dfrac{n\left(4n-3+1\right)}{2}+\dfrac{n\left(2n+2\right)}{2}=3675\)
\(\Leftrightarrow2n^2-n+n^2+n=3675\)
\(\Leftrightarrow3n^2=3675\Leftrightarrow n^2=1225\Leftrightarrow n=35\)
Bậc cao nhấ của biến x là:\(4.35-3=137\)
Có: \(x^3-y^3=-3xy\left(y-x\right)\)
\(\Leftrightarrow x^3-y^3=-3xy^2+3x^2y\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3=0\)
\(\Leftrightarrow\left(x-y\right)^3=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Khi đó bt A trở thành:
\(A=\left(2x-y\right)\left(y-2x\right)\left(y-y\right)^2=\left(2x-y\right)\left(y-2x\right)\cdot0=0\)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
Ta có :
\(8x^3+y^6=A\left(2x+y^2\right)\)
\(\Leftrightarrow\left(2x\right)^3+\left(y^2\right)^3=A\left(2x+y^2\right)\)
\(\Leftrightarrow\left(2x+y^2\right)\left(4x^2+y^4-2xy^2\right)=A\left(2x+y^2\right)\)
Do \(2x+y^2\ne0\) nên ta có
\(A=4x^2+y^4-2xy^2\)