Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :
Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).
Sao ko hiện làm lại :
\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8
a) ĐK \(x\ge1\)
với \(x\ge1\Rightarrow\hept{\begin{cases}\sqrt{x-1}\ge0\\\sqrt{5+x}\ge\sqrt{6}\end{cases}\Rightarrow\sqrt{x-1}+\sqrt{5+x}\ge\sqrt{6}}\)
dâu = xảy ra <=>x=1
b)Dặt ...=A
Ta có A=\(\frac{2}{9}x+\frac{1}{2x}+\frac{2}{9}y+\frac{1}{2y}+\frac{7}{9}\left(x+y\right)\)
Áp dụng BĐT cô-si, ta có \(\frac{2}{9}x+\frac{1}{2x}\ge\frac{2}{3}\)
tương tự có \(\frac{2}{9}y+\frac{1}{2y}\ge\frac{2}{3}\)
Mà \(x+y\ge3\Rightarrow\frac{7}{9}\left(x+y\right)\ge\frac{7}{3}\)
=>\(A\ge\frac{2}{3}+\frac{2}{3}+\frac{7}{3}=\frac{11}{3}\)
Dấu = xảy ra <=>\(x=y=\frac{3}{2}\)
^_^
\(\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+2-2\sqrt{ }x+1}=\frac{x+5}{2}\)\(\frac{x+5}{2}\)
Bài này hay:)
c = min {a,b,c}. Đặt
\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)
\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)
\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)
\(b=y+c=\frac{2y-x+3}{3}\)
Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
Giờ em đang bận, tối em làm tiếp!
\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)
\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)
\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)
\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)
Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)
Cộng vế với vế:
\(K\le4\left(a+b+c\right)=12\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị
Ta có :
\(8x^3+y^6=A\left(2x+y^2\right)\)
\(\Leftrightarrow\left(2x\right)^3+\left(y^2\right)^3=A\left(2x+y^2\right)\)
\(\Leftrightarrow\left(2x+y^2\right)\left(4x^2+y^4-2xy^2\right)=A\left(2x+y^2\right)\)
Do \(2x+y^2\ne0\) nên ta có
\(A=4x^2+y^4-2xy^2\)