K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2020

\(3sin^4x-\left(1-sin^2x\right)^2=\frac{1}{2}\Leftrightarrow3sin^4x-\left(sin^4x-2sin^2x+1\right)=\frac{1}{2}\)

\(\Leftrightarrow2sin^4x+2sin^2x-\frac{3}{2}=0\) \(\Rightarrow\left[{}\begin{matrix}sin^2x=\frac{1}{2}\\sin^2x=-\frac{3}{2}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow cos^2x=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow B=\left(\frac{1}{2}\right)^2+3\left(\frac{1}{2}\right)^2=1\)

\(4sin^4x+3\left(1-sin^2x\right)^2=\frac{7}{4}\Leftrightarrow4sin^4x+3\left(sin^4x-2sin^2x+1\right)=\frac{7}{4}\)

\(\Leftrightarrow7sin^4x-6sin^2x+\frac{5}{4}=0\Rightarrow\left[{}\begin{matrix}sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\\sin^2x=\frac{5}{14}\Rightarrow cos^2x=\frac{9}{14}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C=3\left(\frac{1}{2}\right)^2+4\left(\frac{1}{2}\right)^2=\frac{7}{4}\\C=3\left(\frac{5}{14}\right)^2+4\left(\frac{9}{14}\right)^2=\frac{57}{28}\end{matrix}\right.\)

NV
2 tháng 3 2019

\(3sin^4x+cos^4x=\dfrac{3}{4}\Leftrightarrow\dfrac{\left(sin^2x\right)^2}{1}+\dfrac{\left(cos^2x\right)^2}{3}=\dfrac{1}{4}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{\left(sin^2x\right)^2}{1}+\dfrac{\left(cos^2x\right)^2}{3}\ge\dfrac{\left(sin^2x+cos^2x\right)^2}{1+3}=\dfrac{1}{4}\)

Dấu "=" xảy khi khi và chỉ khi: \(sin^2x=\dfrac{cos^2x}{3}\Rightarrow sin^4x=\dfrac{cos^4x}{9}\)

Thay vào biểu thức ban đầu:

\(3\left(\dfrac{cos^4x}{9}\right)+cos^4x=\dfrac{3}{4}\Leftrightarrow\dfrac{4}{3}cos^4x=\dfrac{3}{4}\Rightarrow cos^4x=\dfrac{9}{16}\)

\(\Rightarrow A=\dfrac{cos^4x}{9}+3cos^4x=\dfrac{9}{16.9}+\dfrac{3.9}{16}=\dfrac{7}{4}\)

25 tháng 4 2019

\(hàng thứ 2 chỗ sau dấu >= là tại sao vậy ạ ?\)

NV
8 tháng 12 2021

\(P=\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)

\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)

\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)

\(=2cos^2x+1+2sin^2x+1\)

\(=2\left(sin^2x+cos^2x\right)+2=4\)

8 tháng 12 2021

https://hoc24.vn/cau-hoi/.3550407460796 cíu em với ah :(((

1 tháng 7 2021

a)\(-1\le sinx\le1\)

\(\Leftrightarrow1\ge-sinx\ge-1\)

\(\Leftrightarrow4\ge3-sinx\ge2\) \(\Leftrightarrow16\ge\left(3-sinx\right)^2\ge4\)\(\Leftrightarrow17\ge\left(3-sinx\right)^2+1\ge5\)

\(\Leftrightarrow17\ge y\ge5\)

\(y_{min}=5\Leftrightarrow sinx=1\)\(\Leftrightarrow\)\(x=\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)

\(y_{max}=17\Leftrightarrow\)\(sinx=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)

b)\(y=\left(sin^2x+cos^2x\right)^2-2.sinx^2cos^2x\)\(=1-\dfrac{1}{2}.sin^22x\)

Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{1}{2}.sin^22x\ge-\dfrac{1}{2}\)

\(\Leftrightarrow1\ge1-\dfrac{1}{2}.sin^22x\ge\dfrac{1}{2}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{2}\)

\(y_{min}=\dfrac{1}{2}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}sin2x=-1\\sin2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)

c)\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1-3sin^2x.cos^2x=1-\dfrac{3}{4}.sin^22x\)

Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{3}{4}.sin^22x\ge-\dfrac{3}{4}\)

\(\Leftrightarrow1\ge1-\dfrac{3}{4}.sin^22x\ge\dfrac{1}{4}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{4}\)

\(y_{min}=\dfrac{1}{4}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)

Vậy...

1 tháng 7 2021

a, Đặt \(t=sinx\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=\left(3-t\right)^2+1=t^2-6t+10\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(1\right)=5\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(-1\right)=17\)

b, \(y=sin^4x+cos^4x=1-2sin^2x.cos^2x=1-\dfrac{1}{2}sin^22x\)
Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=1-\dfrac{1}{2}t^2\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{2}\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)

c, \(y=sin^6x+cos^6x\)

\(=sin^4x+cos^4x-sin^2x.cos^2x\)

\(=1-3sin^2x.cos^2x\)

\(=1-\dfrac{3}{4}sin^22x\)

Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=1-\dfrac{3}{4}t^2\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{4}\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)

\(0< =sin^2x< =1\)

=>\(-2< =sin^2x-2< =-1\)

=>\(sin^2x-2< 0\)

\(0< =cos^2x< =1\)

=>\(-2< =cos^2x-2< =-1\)

\(\Leftrightarrow cos^2x-2< 0\)

\(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4\cdot sin^2x}\)

\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\cdot\left(1-cos^2x\right)}\)

\(=\sqrt{sin^4x-4sin^xx+4}+\sqrt{cos^4x-4\cdot cos^2x+4}\)

\(=\sqrt{\left(sin^2x-2\right)^2}+\sqrt{\left(cos^2x-2\right)^2}\)

\(=\left|sin^2x-2\right|+\left|cos^2x-2\right|\)

\(=2-sin^2x+2-cos^2x\)

\(=4-\left(sin^2x+cos^2x\right)=4-1=3\)

NV
9 tháng 6 2020

\(B=cos^2x.cot^2x+cos^2x-cot^2x+2\left(sin^2x+cos^2x\right)\)

\(=cos^2x\left(cot^2x+1\right)-cot^2x+2\)

\(=\frac{cos^2x}{sin^2x}-cot^2x+1=cot^2x-cot^2x+1=1\)

\(M=cos^4x-sin^4x+cos^4x+sin^2x.cos^2x+3sin^2x\)

\(=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(=2\left(sin^2x+cos^2x\right)=2\)

NV
8 tháng 8 2020

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

NV
8 tháng 8 2020

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

NV
15 tháng 8 2020

4.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=cos2x\)

\(\Leftrightarrow1-\frac{1}{2}sin^22x=cos2x\)

\(\Leftrightarrow1+1-sin^22x=2cos2x\)

\(\Leftrightarrow1+cos^22x=2cos2x\)

\(\Leftrightarrow\left(cos2x-1\right)^2=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow2x=k2\pi\)

\(\Rightarrow x=k\pi\)

NV
15 tháng 8 2020

3.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{1}{2}\)

\(\Leftrightarrow1-sin^22x=0\)

\(\Leftrightarrow cos^22x=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

NV
8 tháng 10 2020

1.

\(\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+5cosx+3=0\)

\(\Leftrightarrow2cos^2x-1+5cosx+3=0\)

\(\Leftrightarrow2cos^2x+5cosx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=-2\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

2.

\(3\left(1-sin^2x\right)+\left(1-sin^2x\right)sinx=8\left(1+sinx\right)\)

\(\Leftrightarrow\left(1+sinx\right)\left(3-3sinx\right)+\left(1+sinx\right)\left(sinx-sin^2x\right)=8\left(1+sinx\right)\)

\(\Leftrightarrow\left(1+sinx\right)\left(3-3sinx+sinx-sin^2x-8\right)=0\)

\(\Leftrightarrow\left(1+sinx\right)\left(-sin^2x-2sinx-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\-sin^2x-2sinx-5=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)