K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:ĐKXĐ: \(\left\{\begin{matrix} 6-x\geq 0\\ x-1\geq 0\\ 1+\sqrt{x-1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x\geq 1\end{matrix}\right.\) hay $x\in [1;6]$ 

Đáp án D

NV
11 tháng 8 2020

2. ĐKXĐ:

a. \(\left\{{}\begin{matrix}cosx\ne0\\2-cosx+tan^2x\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

\(\Rightarrow x\ne\frac{\pi}{2}+k\pi\)

(BPT dưới luôn đúng do \(\left\{{}\begin{matrix}tan^2x\ge0\\2-cosx>0\end{matrix}\right.\) với mọi x)

b. \(sin2x-sinx+3\ge0\)

\(\Leftrightarrow\left(sin2x+2\right)+\left(1-sinx\right)\ge0\)

Do \(\left\{{}\begin{matrix}sin2x\ge-1\\sinx\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin2x+2>0\\1-sinx\ge0\end{matrix}\right.\)

\(\Rightarrow\) BPT luôn thỏa mãn hay hàm số xác định trên R

NV
11 tháng 8 2020

1.

\(\Leftrightarrow f\left(x\right)=sin^4x+cos^4x-2m.sinx.cosx\ge0\) ;\(\forall x\in R\)

\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-2m.sinx.cosx\)

\(=-\frac{1}{2}sin^22x-m.sin2x+1\)

Đặt \(sin2x=t\Rightarrow\left|t\right|\le1\)

\(f\left(t\right)=-\frac{1}{2}t^2-mt+1\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)

\(a=-\frac{1}{2}< 0\Rightarrow\min\limits f\left(t\right)\) xảy ra tại 1 trong 2 đầu mút

\(f\left(-1\right)=m+\frac{1}{2}\) ; \(f\left(1\right)=\frac{1}{2}-m\)

TH1: \(\left\{{}\begin{matrix}m+\frac{1}{2}\ge\frac{1}{2}-m\\\frac{1}{2}-m\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{2}\)

TH2: \(\left\{{}\begin{matrix}\frac{1}{2}-m\ge m+\frac{1}{2}\\m+\frac{1}{2}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m\ge-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)

22 tháng 10 2020

\(\left\{{}\begin{matrix}\sqrt{x-2\sqrt{x-1}}\ne0\\x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\\left(\sqrt{x-1}-1\right)^2\ge0\\x\ge1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\in R\\x\ge1\end{matrix}\right.\)

\(\Rightarrow TXĐ:D=[1;+\infty)\cup\left\{2\right\}\)

1 tháng 1 2020

đkxđ

\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\\sqrt{x}-2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne4\end{matrix}\right.\)

vậy \(x\ge0;x\ne4;x\ne9\)là đkxđ củaP

5 tháng 6 2021

undefined

5 tháng 6 2021

y xác định \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2cosx+3}{sinx+1}\ge0\left(1\right)\\sinx+1\ne0\left(2\right)\end{matrix}\right.\)

`(1) <=> 2cosx+3>=sinx+1`

`<=>2cosx+2>=sinx `

Vì `2cosx+2>sin^2x+cos^2x>=sinx`

`=> 2cosx+2>=sinx forall x`

`(2) <=> x \ne -π/2 +k2π`

Vậy `D=RR \\ {-π/2 + k2π} (k \in ZZ)`.