K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

TH1: \(m=2\)

\(pt\Leftrightarrow-4x+5=0\Leftrightarrow x=\dfrac{5}{4}\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

TH2: \(m\ne2\)

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-m>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -3\\2< m< 6\end{matrix}\right.\)

Vậy \(m\in\left(-\infty;-3\right)\cup\left(2;6\right)\)

Trường hợp 1: m=0

=>-3<0(luôn đúng)

=>Nhận

Trường hợp 2: m<>0

\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)

Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)

Vậy: -3<m<=0

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:ĐKXĐ: \(\left\{\begin{matrix} 6-x\geq 0\\ x-1\geq 0\\ 1+\sqrt{x-1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x\geq 1\end{matrix}\right.\) hay $x\in [1;6]$ 

Đáp án D

13 tháng 12 2019

1

2 tháng 1 2021

ĐK: \(x\ne\pm1\)

\(\dfrac{x^2+mx+2}{x^2-1}=1\)

\(\Leftrightarrow x^2+mx+2=x^2-1\)

\(\Leftrightarrow mx=-3\)

Yêu cầu bài toán thỏa mãn khi \(\left[{}\begin{matrix}m=0\\-\dfrac{3}{m}=\pm1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm3\end{matrix}\right.\)

Vậy \(m=0;m=\pm3\Rightarrow A\)

28 tháng 8 2018

\(\dfrac{1+sin^4x-cos^4x}{1-sin^6x-cos^6x}=\dfrac{1+sin^2x-cos^2x}{1-\left(sin^4x+cos^4x-sin^2xcos^2x\right)}=\dfrac{1+sin^2x-\left(1-sin^2x\right)}{1-\left(1-3sin^2xcos^2x\right)}=\dfrac{2sin^2x}{3sin^2xcos^2x}=\dfrac{2}{3cos^2x}\)