cho x + (-2019) = (-2019) +2020 . số nguyên x bằng
mn gúip en với ạ 8:00 em nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của là sẽ tìm được nghiệm nguyên của
Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >
S = 1 - 1/4 + 1 - 1/9 + 1 - 1/16 + ... + 1 - 1/2019^2
S = (1 + 1 + 1 + ... +1) - (1/4 + 1/9 + 1/16 + ... + 1/2019^2)
S = 2018 - (1/4 + 1/9 + 1/16 + ... + 1/2019^2)
đặt A = 1/4 + 1/9 + 1/16 + ... + 1/2019^2
có : 1/4 = 1/2*2 < 1/1*2
1/9 = 1/3*3 < 1/2*3
...
1/2019^2 < 1/2018*2019
=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + /12018*2019
=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4+ ... + 1/2018 - 1/2019
=> A < 1 - 1/2019
=> A < 2018/2019
=> A không phải số nguyên
S = 2018 - A
=> S không phải 1 số nguyên
x + ( -2019) = ( -2019 ) + 2020
x = 2020 [cộng hai bên cho ( -2019 ) ]
Vậy x = 2020
\(x+\left(-2019\right)=-2019+2020\)
\(=>x=-2019+2020+2019=>x=2020\)
ok