Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
S=1-1/4+1-1/9+...+1-1/x2
S=(1+1+1+...+1)-(1/4+1/9+...+1/x2)
Có (1/4+1/9+...+1/x2)<1/(1.2)+1/(2.3)+...+1/(x-1)x=1-1/x<1
=> (1/4+1/9+...+1/x2) ko là số nguyên
=>S ko là số nguyên
\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+.....+\frac{n^2-1}{n^2}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+....+\frac{n^2-1}{n^2}\)
\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}\right)\)
\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}\right)\)
Mà \(0< \frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}< 1\) ( không biết chứng minh thì ib )
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}\) không là số nguyên => đpcm
a)A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2017+3^2018+3^2019)
A=(3+3^2+3^3)+3^3x(3+3^2+3^3)+...+3^2016x(3+3^2+3^3) suy ra A chia hết cho (3+3^2+3^3)
Mà (3+3^2+3^3)=39;39 chia hết cho 13 nên A chia hết cho 13
S = 1 - 1/4 + 1 - 1/9 + 1 - 1/16 + ... + 1 - 1/2019^2
S = (1 + 1 + 1 + ... +1) - (1/4 + 1/9 + 1/16 + ... + 1/2019^2)
S = 2018 - (1/4 + 1/9 + 1/16 + ... + 1/2019^2)
đặt A = 1/4 + 1/9 + 1/16 + ... + 1/2019^2
có : 1/4 = 1/2*2 < 1/1*2
1/9 = 1/3*3 < 1/2*3
...
1/2019^2 < 1/2018*2019
=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + /12018*2019
=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4+ ... + 1/2018 - 1/2019
=> A < 1 - 1/2019
=> A < 2018/2019
=> A không phải số nguyên
S = 2018 - A
=> S không phải 1 số nguyên