a,\(\frac{a}{b}=\frac{21}{35}\)và ƯCLN(a,b)=30
b,\(\frac{a}{b}=\frac{36}{45}\)và ƯCLN(a,b)=300
TÌM PHÂN SỐ \(\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/b=36/45=4/5 Suy ra a=4k, b=5k
Suy ra BCNN(a;b)=BCNN(4k;5k)=22.5.k=20k
Mà BCNN(a;b)=300
Suy ra 20k=300
Suy ra k=300:20=15 Suy ra a=60,b=75
b) Ta có 21/35=3/5
ta có 3/5 là phân số tối giản bằng phân số a/b suy ra phân số a/b đã chia cho ƯCLN (a;b)=30 để được 1 phân số tối giản là 3/5
Suy ra a=3.30=90, b=5.30=160
c) Ta có BCNN(a;b).ƯCLN (a,b)=ab=3549
Ta có: a/b=15/35=3/7 suy ra a=3k, b=7k
Suy ra a.b=3k.7k=3549
Suy ra 21.k2=3549
Suy ra k2=169 Suy ra k=13
Bài 2:
a) Theo đề bài, a= 30d ; b=30d' ⇒UCLN(d,d')=1
\(\frac{a}{b}=\frac{21}{35}=\frac{3}{5}\)
⇒\(\frac{30d}{30d'}=\frac{3}{5}\) hay \(\frac{d}{d'}\)\(=\frac{3}{5}\)
Mà UCLN(d,d')=1 nên d=3 còn d'=5
Vậy a = 30.3=90 ; b=30.5=150
b) CMTT ⇒ a =300.4=1200 ; b=300.5=1500
c)Gọi m là UCLN của a và b
⇒ a=md ; b=md'
\(\frac{a}{b}=\frac{15}{35}=\frac{3}{7}=\frac{md}{md'}=\frac{d}{d'}\)⇒\(\frac{d}{d'}=\frac{3}{7}\)mà UCLN(d,d')=1
⇒d=3 và d'=7
ƯCLN(a;b).BCNN(a;b)=m.m.d.d'=m2.3.7=3549=3.7.132
⇒m2=132⇒m=13
Vậy, a=13.3=39 ; b=13.7=91
Bài 1:
a) Gọi d là ƯCLN(21n+4,14n+3)
⇒21n+4;14n+3 ⋮ d
⇒3(14n+3)-2(21n+4) ⋮ d
Hay 1 ⋮ d ⇒ d =1
Vậy phân số \(\frac{21n+4}{14n+3}\) là phân số tối giản với mọi số nguyên n.
b)Gọi d là ƯCLN(12n+1,30n+2)
⇒12n+1,30n+2 ⋮ d
⇒5(12n+1)-2(30n+2) ⋮ d
Hay 1 ⋮ d ⇒ d=1
Vậy phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản với mọi số nguyên n.
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
\(\frac{a}{b}=\frac{36}{45}=\frac{4}{5}\)
(a,b) = 31 chứng tỏ phân số \(\frac{a}{b}\)rút gọn cho 31 được \(\frac{4}{5}\)
Vậy \(\frac{a}{b}=\frac{4.31}{5.31}=\frac{124}{155}\)
phân số\(\frac{a}{b}\)tối giản là \(\frac{4}{5}\)
vì ƯCLN (a;b) = 31\(\Rightarrow\)a;b \(\in\)B(31)={31;62;96;124;155;...}
mà 124=31.4; 155=31.5\(\Rightarrow\)\(\frac{a}{b}\)=\(\frac{124}{155}\)
a, \(\frac{3}{5}\)
b, \(\frac{4}{5}\)